Prandtl-Meyer Function Web Application

Keith Atkinson

22 September 2020
Contents

1 Introduction... 5
1.1 Isentropic expansion ... 6
1.2 Isentropic compression .. 6
2 Mach number from the Prandtl-Meyer function .. 7
3 Newton-Raphson method... 9
4 Ranges of parameters.. 11
5 References.. 12

Figures

Figure 1 Isentropic expansion and compression by turning.. 5
Figure 2 Prandtl-Meyer function .. 7
Figure 3 Graphical depiction of the Newton-Raphson method.. 10
1 Introduction

You can find the Atkinson Science Prandtl-Meyer Function web application at the web address https://atkinsonscience.co.uk/WebApps/Aerospace/PrandtlMeyerFunction.aspx. There is a user guide that you can download at the same address. The Prandtl-Meyer function is used to calculate the change in Mach number or flow inclination angle when a supersonic flow undergoes an isentropic expansion or compression by turning. Referring to Figure 1, an isentropic expansion by turning occurs when a gas flows over a convex corner, so that the flow along the wall is turned away from the main flow. An isentropic compression by turning occurs when a gas flows over a concave corner, so that the flow along the wall is turned into from the main flow.

In Figure 1 the Mach number M and flow inclination angle θ change from (M_1, θ_1) to (M_2, θ_2). The Prandtl-Meyer function enables us to determine M_2 given M_1, θ_1 and θ_2, or θ_2 given M_1, θ_1 and M_2.

The function applies to a calorically perfect gas, and the derivation of the function can be found in text books on compressible flow, such as Refs. [1] and [2]. The function has the form

$$\theta = \nu(M)$$

The angle θ is chosen to be zero when $M = 1$ and increases monotonically with M. Evaluating $\nu(M)$ is laborious, and many text books, such as Refs. [1] and [2], give tables of $\nu(M)$ against M. The Prandtl-Meyer function web application is intended to replace these tables.

Figure 1 Isentropic expansion and compression by turning
1.1 Isentropic expansion

If the flow incidence angle θ_2 after an isentropic expansion is known, then we can calculate the Prandtl-Meyer function at exit from the corner as follows:

$$v_2 = v_1 + |\theta_2 - \theta_1|$$

where $v_1 = v(M_1)$ and $v_2 = v(M_2)$. The exit Mach number M_2 can then be determined from v_2 using tables.

If the exit Mach number M_2 is known, then we calculate the exit incidence angle as follows:

$$|\theta_2 - \theta_1| = v_2 - v_1$$

The flow angle θ_2 can take two values, but the turning is $v_2 - v_1$ in both cases.

1.2 Isentropic compression

If the flow incidence angle θ_2 after an isentropic compression is known, then we can calculate the Prandtl-Meyer function at exit from the corner as follows:

$$v_2 = v_1 - |\theta_2 - \theta_1|$$

The exit Mach number M_2 can then be determined from v_2 using tables.

If the exit Mach number M_2 is known, then we calculate the exit incidence angle as follows:

$$|\theta_2 - \theta_1| = v_1 - v_2$$

The flow angle θ_2 can take two values, but the turning is $v_1 - v_2$ in both cases.
2 Mach number from the Prandtl-Meyer function

The Prandtl-Meyer function is

\[\nu(M) = \frac{y + 1}{y - 1} \tan^{-1} \left(\frac{y - 1}{y + 1} \left(M^2 - 1 \right) \right) - \tan^{-1} \left(\sqrt{M^2 - 1} \right) \] [radians] (1)

where \(y = \frac{c_p}{c_v} \) is the ratio of specific heats of the gas. Tabulated values of \(\nu(M) \) against \(M \) are usually for \(y = 1.4 \), which is the ratio of specific heats of the International Standard Atmosphere (Ref. [3]).

The equation expresses \(\nu \) explicitly in terms of \(M \). The variation of \(\nu \) with \(M \) is shown in Figure 2. The ratio of specific heats \(y \) in Figure 2 is 1.4.

![Figure 2 Prandtl-Meyer function](image)

As \(M \to \infty \) the arctan functions is Eqn. (1) tend to \(\pi/2 \) and so we can write

\[\nu(M \to \infty) = \frac{\pi}{2} \left(\frac{y + 1}{y - 1} \right) \] [radians]

When \(y = 1.4 \), \(\nu(M \to \infty) = 130^\circ \) (2.27 rad). This is the upper limit of \(\nu \) for which it is possible to find a value of \(M \).
To the author’s knowledge there is no general solution of the inverse of the Prandtl-Meyer function for any \(\gamma \). An exact solution has been published for \(\gamma = 5/3 \) (see Ref. [4]). In this case, the square root term involving \(\gamma \) is particularly simple:

\[
\sqrt{\frac{\gamma + 1}{\gamma - 1}} = 2
\]

However, we can calculate the inverse quite quickly and easily for the general case by using a numerical method on a computer. The Newton-Raphson iterative method is well suited to the task.

In order to use the Newton-Raphson method, we require an equation for the derivative \(dv/dM \). We can write the Prandtl-Meyer function as follows.

\[
v = \frac{1}{\lambda} \tan^{-1}(\lambda \beta) - \tan^{-1}(\beta)
\]

where

\[
\lambda = \sqrt{\frac{\gamma - 1}{\gamma + 1}}
\]

and

\[
\beta = \sqrt{M^2 - 1}
\]

Differentiating \(v \) with respect to \(\beta \),

\[
\frac{dv}{d\beta} = \frac{1}{\lambda} \frac{\lambda}{1 + \lambda^2 \beta^2} - \frac{1}{1 + \beta^2} = \frac{(1 - \lambda^2) \beta^2}{(1 + \beta^2)(1 + \lambda^2 \beta^2)}
\]

Differentiating \(\beta \) with respect to \(M \),

\[
\frac{d\beta}{dM} = \frac{M}{\sqrt{M^2 - 1}} = \frac{M}{\beta}
\]

By the chain rule,

\[
\frac{dv}{dM} = \frac{dv}{d\beta} \frac{d\beta}{dM} = \frac{(1 - \lambda^2) \beta^2}{(1 + \beta^2)(1 + \lambda^2 \beta^2)} \times \frac{M}{\beta} = \frac{(1 - \lambda^2) \beta}{M(1 + \lambda^2 \beta^2)} \tag{2}
\]

since \(1 + \beta^2 = M^2 \).
3 Newton-Raphson method

Using Eqn. (1) we can define the function

\[
f(M) = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1}\left(\frac{\gamma - 1}{\gamma + 1} (M^2 - 1)\right) - \tan^{-1}\left(\sqrt{M^2 - 1}\right) - v \quad (3)
\]

The Mach number \(M\) is now the root of the function \(f(M)\). We can use the Newton-Raphson iterative method to find the root.

In the Newton-Raphson method we make an initial guess at the root, \(M_i\). We then draw a tangent from the point \([M_i, f(M_i)]\). The point where this tangent crosses the \(M\) axis usually represents an improved estimate \(M_{i+1}\) of the root.

The first derivative \(f'(M_i)\) at \(M_i\) is equivalent to the tangent to the point, so the new estimate \(M_{i+1}\) is given by:

\[
f'(M_i) = \frac{f(M_i) - 0}{M_i - M_{i+1}}
\]

Rearranging this equation gives

\[
M_{i+1} = M_i - \frac{f(M_i)}{f'(M_i)}
\]

which is called the Newton-Raphson formula.

The last term in Eqn. (3) for \(f(M)\) is a constant, so the first derivative, \(f'(M)\), is given by Eqn. (2),

\[
f'(M_i) = \frac{(1 - \lambda^2)\beta}{M(1 + \lambda^2 \beta^2)}
\]

Figure 5 shows a graphical depiction of the Newton-Raphson method for \(\gamma = 1.4, \nu = 35^\circ\) (0.6109 radians), for which \(M = 2.329\). The initial guess is \(M = 1.1\). We can see that the required Mach number is obtained within three iterations. In the web application we have fixed the initial guess at \(M = 1.1\).
Figure 3 Graphical depiction of the Newton-Raphson method
4 Ranges of parameters

In the web application γ is 1.4, which is the ratio of specific heats for the International Standard Atmosphere (Ref. [3]). When calculating the Prandtl-Meyer function from the Mach number, the Mach number may not be less than 1. When calculating the Mach number from the Prandtl-Meyer function, the Prandtl-Meyer function may not be less than 0° or greater than 130° (2.27 radians).
5 References