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1 Introduction 
 
In the previous report in this series, Ref. [1], we introduced Fourier’s law of heat conduction, 
 

𝑞𝑞(𝑥𝑥, 𝑡𝑡) = − 𝑘𝑘(𝑥𝑥)
𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥
      (1.1) 

 
where 𝑞𝑞(𝑥𝑥, 𝑡𝑡) [W m−2] is the heat flux in the direction 𝑥𝑥 [m] normal to a flat plate of infinitesimal 
thickness, with thermal conductivity 𝑘𝑘(𝑥𝑥) [W m−1 K−1], and 𝜃𝜃(𝑥𝑥, 𝑡𝑡) [K] is the temperature in the plate. 
 
By using Fourier’s law we derived the equation of one-dimensional transient heat conduction for a 
material whose thermal properties vary in the heat flow direction: 
 

𝜌𝜌(𝑥𝑥)𝐶𝐶(𝑥𝑥)
𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

=
𝜕𝜕

𝜕𝜕𝑥𝑥 �𝑘𝑘(𝑥𝑥)
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥�       (1.2) 

 
The thermal properties 𝜌𝜌 [kg m−3] and 𝐶𝐶 [J kg−1 K−1] are the density and specific heat capacity of the 
material, respectively. If the thermal properties are constant, then (1.2) simplifies to 
 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

= 𝛼𝛼
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2       (1.3) 

 
where 𝛼𝛼 = 𝑘𝑘/(𝜌𝜌𝐶𝐶) [m2 s−1] is the (constant) thermal diffusivity of the material. 
 
Finally, we showed how we can use (1.3) to calculate the time-varying temperature through a 
homogenous slab when the temperature on one side of the slab is made to oscillate sinusoidally and the 
temperature on the other side is held constant. In this report we shall focus on calculating the time-
varying heat fluxes into and out of the slab and develop the method known as the admittance method. 
 
Sections 2 to 7 present the mathematical analysis that underlies the admittance method. The important 
practical results from the analysis are summarised in Section 7. All of the mathematics in this report is 
covered in most textbooks on advanced mathematics for engineers and scientists. Ref. [2] covers all of 
the mathematics in the complete series of reports. This report contains numerous worked examples to 
help the reader become familiar with and use the admittance method. 
 
 
 
 
  



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

6 
 

 
 
 
 
  



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

7 
 

2 Temperature excitation on one side of a homogeneous slab 
 
We shall begin the mathematical analysis by considering a slab of homogeneous conducting material 
with thickness 𝐿𝐿 [m], as shown in Figure 1. 
 
 
Figure 1  Conducting slab with temperature excitation on the side 𝑥𝑥 = 0 

 
 
 
We want to calculate the instantaneous heat flux 𝑞𝑞(𝑥𝑥, 𝑡𝑡) [W m−2] in the slab, given the initial condition 
 

𝜃𝜃(𝑥𝑥, 0) [K] = 0      (2.1) 
 
and boundary conditions 
 

𝜃𝜃(0, 𝑡𝑡) = 𝑓𝑓(𝑡𝑡)      (2.2) 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 0      (2.3) 
 
We can solve this boundary-value problem using Laplace transforms. We first take the Laplace 
transform of the heat conduction equation (1.3) and associated boundary conditions with respect to one 
of the independent variables. We then have an ordinary differential equation (ODE) for the Laplace 
transform of the required solution. We solve the ODE to obtain the Laplace transform. However, we 
shall not attempt to find the inverse Laplace transform and thus the temperature in the slab. 
 
 
  

𝜃𝜃(0, 𝑡𝑡) = 𝑓𝑓(𝑡𝑡) 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 0 

𝜃𝜃 [C] 𝜃𝜃 [C] 

𝑡𝑡 [hr] 𝑡𝑡 [hr] 

𝑥𝑥 [m] 0 𝐿𝐿 

0 0 

 



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

8 
 

We shall take the Laplace transform of (1.3) with respect to 𝑡𝑡. The Laplace transform of the left hand 
side of (1.3) is: 
 

ℒ{𝜃𝜃′(𝑥𝑥, 𝑡𝑡)} = 𝑠𝑠ℒ{𝜃𝜃(𝑥𝑥, 𝑡𝑡)} − 𝜃𝜃(𝑥𝑥, 0) 
 

= 𝑠𝑠 � 𝑒𝑒−𝑠𝑠𝑠𝑠𝜃𝜃 𝑑𝑑𝑡𝑡
∞

0
− 𝜃𝜃(𝑥𝑥, 0) 

 
= 𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑠𝑠) − 𝜃𝜃(𝑥𝑥, 0) 

 
The Laplace transform of the right hand side is: 
 

ℒ �𝛼𝛼
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2� = � 𝑒𝑒−𝑠𝑠𝑠𝑠 �𝛼𝛼

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2�

∞

0
𝑑𝑑𝑡𝑡 

 

= 𝛼𝛼
𝑑𝑑2

𝑑𝑑𝑥𝑥2 � 𝑒𝑒−𝑠𝑠𝑠𝑠𝜃𝜃 𝑑𝑑𝑡𝑡
∞

0
 

 

= 𝛼𝛼
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2  

 
Equating the left and right hand sides gives 
 

𝑠𝑠𝑠𝑠 − 𝜃𝜃(𝑥𝑥, 0) = 𝛼𝛼
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2  

 
or 
 

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2 =

𝑠𝑠
𝛼𝛼

𝑠𝑠 −
1
𝛼𝛼

𝜃𝜃(𝑥𝑥, 0)      (2.4) 
 
and applying the initial condition (2.1) gives 
 

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2 =

𝑠𝑠
𝛼𝛼

𝑠𝑠      (2.5) 
 
Taking the Laplace transforms of the boundary conditions (2.2) and (2.3), we have 
 

𝑠𝑠(0, 𝑠𝑠) = ℒ{𝜃𝜃(0, 𝑡𝑡)} = ℒ{𝑓𝑓(𝑡𝑡)} = 𝐹𝐹(𝑠𝑠)      (2.6) 
 

𝑠𝑠(𝐿𝐿, 𝑠𝑠) = ℒ{𝜃𝜃(𝐿𝐿, 𝑡𝑡)} = ℒ{0} = 0      (2.7) 
 
We now have an ordinary differential equation (2.5) and associated boundary conditions (2.6) and (2.7) 
for the Laplace transform of the required solution. 
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Equation (2.5) is a homogeneous linear ordinary differential equation with constant coefficients, so we 
can use the elementary methods set out in Ref. [2]. The order 𝑛𝑛 of the equation is 2, so we must find 
two linearly independent solutions of the equation. Let 𝑠𝑠 = 𝑒𝑒𝑚𝑚𝑥𝑥 where 𝑚𝑚 is a constant. Substituting into 
(2.5) gives 
 

�𝑚𝑚2 −
𝑠𝑠
𝛼𝛼

� 𝑒𝑒𝑚𝑚𝑚𝑚 = 0 
 
or 
 

𝑚𝑚2 −
𝑠𝑠
𝛼𝛼

= 0      (2.8) 
 
The roots 𝑚𝑚 of (2.8) are ±�𝑠𝑠 𝛼𝛼⁄ , and the required linearly independent solutions of (2.5) are 
 

𝑠𝑠1 = 𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄   and 𝑠𝑠2 = 𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄   
 
The general solution of (2.5) is therefore 
 

𝑠𝑠 = 𝑐𝑐1𝑠𝑠1 + 𝑐𝑐2𝑠𝑠2 
 

𝑠𝑠(𝑥𝑥, 𝑠𝑠) = 𝑐𝑐1𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄       (2.9) 
 
Applying the boundary conditions (2.6) and (2.7) to (2.9) gives 
 

𝐹𝐹(𝑠𝑠) = 𝑐𝑐1𝑒𝑒(0)�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−(0)�𝑠𝑠 𝛼𝛼⁄  = 𝑐𝑐1 + 𝑐𝑐2      (2.10) 
 

0 = 𝑐𝑐1𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄        (2.11) 
 
We can solve the simultaneous equations (2.10) and (2.11) as follows. From (2.10), 
 

𝑐𝑐2 = 𝐹𝐹(𝑠𝑠) − 𝑐𝑐1 
 
Substituting into (2.11) gives 
 

𝑐𝑐1𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  + (𝐹𝐹(𝑠𝑠) − 𝑐𝑐1)𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  = 0 
 
or 
 

𝑐𝑐1 =
−𝐹𝐹(𝑠𝑠)𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
      (2.12) 
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Then, we have 
 

𝑐𝑐2 = 𝐹𝐹(𝑠𝑠) − 𝑐𝑐1 
 

= 𝐹𝐹(𝑠𝑠) +
−𝐹𝐹(𝑠𝑠)𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
 

 

=
𝐹𝐹(𝑠𝑠)𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
      (2.13) 

 
Finally, substituting (2.12) and (2.13) into (2.9) gives 
 

𝑠𝑠(𝑥𝑥, 𝑠𝑠) =
−𝐹𝐹(𝑠𝑠)𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  + 𝐹𝐹(𝑠𝑠)𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
 

 

=
𝑒𝑒(𝐿𝐿−𝑚𝑚)�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−(𝐿𝐿−𝑚𝑚)�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
𝐹𝐹(𝑠𝑠) 

 

=
sinh �(𝐿𝐿 − 𝑥𝑥)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
𝐹𝐹(𝑠𝑠)      (2.14) 

 
We shall not attempt to find the inverse Laplace transform of (2.14) and thus the temperature 𝜃𝜃(𝑥𝑥 ,𝑡𝑡). 
 
We can also transform Fourier’s law: 
 

𝑞𝑞(𝑥𝑥, 𝑡𝑡) = −𝑘𝑘
𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥
      (2.15) 

 
into the Laplace domain. The Laplace transform of the left hand side of (2.15) is 
 

ℒ{𝑞𝑞(𝑥𝑥, 𝑡𝑡)} = 𝑄𝑄(𝑥𝑥, 𝑠𝑠)      (2.16) 
 
and the Laplace transform of the right hand side of (2.15) is 
 

ℒ �−𝑘𝑘
𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥 � = � 𝑒𝑒−𝑠𝑠𝑠𝑠
∞

0
�−𝑘𝑘

𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥 � 𝑑𝑑𝑡𝑡 

 

= −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑒𝑒−𝑠𝑠𝑠𝑠𝜃𝜃(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑡𝑡

∞

0
 

 

= −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥
𝑠𝑠(𝑥𝑥, 𝑠𝑠)      (2.17) 
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Equating the left and right hand sides gives 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥
𝑠𝑠(𝑥𝑥, 𝑠𝑠)      (2.18) 

 
We already have Θ(x, s) from Equation (2.14). Substituting (2.14) into (2.18) gives 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥 �
sinh �(𝐿𝐿 − 𝑥𝑥)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
𝐹𝐹(𝑠𝑠)� 

 

= −𝑘𝑘 �
−�𝑠𝑠/𝛼𝛼 cosh �(𝐿𝐿 − 𝑥𝑥)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
𝐹𝐹(𝑠𝑠)� 

 

= 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh �(𝐿𝐿 − 𝑥𝑥)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
� 𝐹𝐹(𝑠𝑠)      (2.19) 

 
We now have a solution in the Laplace domain of the heat flux in the slab due to a temperature excitation 
on the side 𝑥𝑥 = 0 of the slab. We shall return to this solution in Section 4. 
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3 Temperature excitation on the reverse side of the slab 
 
We now want to solve the heat conduction equation with the initial condition 
 

𝜃𝜃(𝑥𝑥, 0) = 0      (3.1) 
 
and the boundary conditions 
 

𝜃𝜃(0, 𝑡𝑡) = 0      (3.2) 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = ℎ(𝑡𝑡)      (3.3) 
 
as shown in Figure 2. 
 
 
Figure 2  Conducting slab with temperature excitation on right side 

 
 
 
Recall the heat conduction equation (1.3): 
 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

= 𝛼𝛼
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2       (1.3) 

 
We showed that the Laplace transform of (1.3) is given by (2.4): 
 

𝑑𝑑2𝑠𝑠(𝑥𝑥, 𝑠𝑠)
𝑑𝑑𝑥𝑥2 =

𝑠𝑠
𝛼𝛼

𝑠𝑠(𝑥𝑥, 𝑠𝑠) −
1
𝛼𝛼

𝜃𝜃(𝑥𝑥, 0)      (2.4) 
 
Applying the initial condition (3.1) gives 
 

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑥𝑥2 =

𝑠𝑠
𝛼𝛼

𝑠𝑠      (3.4) 
 
 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = ℎ(𝑡𝑡) 

𝜃𝜃(0, 𝑡𝑡) = 0 

𝜃𝜃 [C] 𝜃𝜃 [C] 

𝑡𝑡 [hr] 𝑡𝑡 [hr] 

𝑥𝑥[m] 0 𝐿𝐿 

0 0 
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Taking the Laplace transforms of the boundary conditions (3.2) and (3.3) gives 
 

𝑠𝑠(0, 𝑠𝑠) = ℒ{𝜃𝜃(0, 𝑡𝑡)} = ℒ{0} = 0      (3.5) 
 

𝑠𝑠(𝐿𝐿, 𝑠𝑠) = ℒ{𝜃𝜃(𝐿𝐿, 𝑡𝑡)} = ℒ{ℎ(𝑡𝑡)} = 𝐻𝐻(𝑠𝑠)      (3.6) 
 
In Section 1 we showed that the general solution of (2.4) is 
 

𝑠𝑠(𝑥𝑥, 𝑠𝑠) = 𝑐𝑐1𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄       (3.7) 
 
By applying the boundary conditions (3.5) and (3.6) to (3.4), we have 
 

0 = 𝑐𝑐1𝑒𝑒(0)�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−(0)�𝑠𝑠 𝛼𝛼⁄  = 𝑐𝑐1 + 𝑐𝑐2      (3.8) 
 

𝐻𝐻(𝑠𝑠) = 𝑐𝑐1𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  + 𝑐𝑐2𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄        (3.9) 
 
We can solve the simultaneous equations (3.8) and (3.9) as follows. From (3.8), 
 

𝑐𝑐2 = −𝑐𝑐1 
 
Substituting into (3.9) gives 
 

𝑐𝑐1𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑐𝑐1𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  = 𝐻𝐻(𝑠𝑠) 
 
or 
 

𝑐𝑐1 =
𝐻𝐻(𝑠𝑠)

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
      (3.10) 

 
Then, we have 
 

𝑐𝑐2 = −𝑐𝑐1 =
−𝐻𝐻(𝑠𝑠)

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
      (3.11) 

 
Finally, substituting (3.10) and (3.11) into (3.7) gives 
 

𝑠𝑠(𝑥𝑥, 𝑠𝑠) =
𝐻𝐻(𝑠𝑠)𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  + 𝐻𝐻(𝑠𝑠)𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
 

 

=
𝑒𝑒𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝑚𝑚�𝑠𝑠 𝛼𝛼⁄  

𝑒𝑒𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  − 𝑒𝑒−𝐿𝐿�𝑠𝑠 𝛼𝛼⁄  
𝐻𝐻(𝑠𝑠) 

 

=
sinh�𝑥𝑥�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

𝐻𝐻(𝑠𝑠)      (3.12) 

 
We shall not attempt to find the inverse Laplace transform of (3.12) and thus the temperature 𝜃𝜃(𝑥𝑥, 𝑡𝑡). 
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We have already calculated the Laplace transform of Fourier’s law. Recall Equation (2.18): 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥
𝑠𝑠(𝑥𝑥, 𝑠𝑠)      (2.18) 

 
We have 𝑠𝑠(𝑥𝑥, 𝑠𝑠) from Equation (3.12). Substituting (3.12) into (2.18) gives 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = −𝑘𝑘
𝑑𝑑

𝑑𝑑𝑥𝑥 �
sinh�𝑥𝑥�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

𝐻𝐻(𝑠𝑠)� 

 

= −𝑘𝑘 �
�𝑠𝑠/𝛼𝛼 cosh�𝑥𝑥�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
𝐻𝐻(𝑠𝑠)� 

 

= −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh �𝑥𝑥�𝑠𝑠 𝛼𝛼⁄ �

sinh �𝐿𝐿�𝑠𝑠 𝛼𝛼⁄ �
� 𝐻𝐻(𝑠𝑠)      (3.13) 

 
We now have a solution in the Laplace domain of the heat flux in the slab due to a temperature excitation 
on the side 𝑥𝑥 = 𝐿𝐿 of the slab. We shall return to this solution in Section 4. 
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4 Temperature excitation on both sides of the slab 
 
We now want to solve the heat conduction equation with excitation on both sides of the slab, as shown 
in Figure 3. 
 
 
 
Figure 3  Conducting slab with temperature excitation on both sides 

 
 
 
We have calculated the heat flux in the Laplace domain subject to temperature excitations 𝐹𝐹(𝑠𝑠) at 𝑥𝑥 = 0. 
Recall Equation (2.19): 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh �(𝐿𝐿 − 𝑥𝑥)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
� 𝐹𝐹(𝑠𝑠)      (2.19) 

 
At 𝑥𝑥 = 0, 
 

𝑄𝑄(0, 𝑠𝑠) = 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

� 𝐹𝐹(𝑠𝑠) 

 
= 𝑈𝑈(𝑠𝑠)𝐹𝐹(𝑠𝑠)      (4.1) 

 
where 
 

𝑈𝑈(𝑠𝑠) = 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

�       (4.2) 

 
 
 
 
 
 

𝜃𝜃(0, 𝑡𝑡) = 𝑓𝑓(𝑡𝑡) 𝜃𝜃 𝜃𝜃 

𝑡𝑡 𝑡𝑡 

𝑥𝑥 0 𝐿𝐿 

0 0 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = ℎ(𝑡𝑡) 
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At 𝑥𝑥 = 𝐿𝐿 [m], 
 

𝑄𝑄(𝐿𝐿, 𝑠𝑠) = 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh �(0)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
� 𝐹𝐹(𝑠𝑠) 

 
= 𝑉𝑉(𝑠𝑠)𝐹𝐹(𝑠𝑠)      (4.3) 

 
where 
 

𝑉𝑉(𝑠𝑠) = 𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

1
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

�       (4.4) 

 
We have also calculated the heat flux in the Laplace domain subject to temperature excitations 𝐻𝐻(𝑠𝑠) at 
𝑥𝑥 = 𝐿𝐿 [m]. Recall Equation (3.13): 
 

𝑄𝑄(𝑥𝑥, 𝑠𝑠) = −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh�𝑥𝑥�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

� 𝐻𝐻(𝑠𝑠)      (3.13) 

 
At 𝑥𝑥 = 0, 
 

𝑄𝑄(0, 𝑠𝑠) = −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh �(0)�𝑠𝑠/𝛼𝛼�

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼𝐿𝐿�
� 𝐻𝐻(𝑠𝑠) 

 
= 𝑊𝑊(𝑠𝑠)𝐻𝐻(𝑠𝑠)      (4.5) 

 
where 
 

𝑊𝑊(𝑠𝑠) = −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

1
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

�       (4.6) 

 
At 𝑥𝑥 = 𝐿𝐿 [m], 
 

𝑄𝑄(𝐿𝐿, 𝑠𝑠) = −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

� 𝐻𝐻(𝑠𝑠) 

 
= 𝑋𝑋(𝑠𝑠)𝐻𝐻(𝑠𝑠)      (4.7) 

 
where 
 

𝑋𝑋(𝑠𝑠) = −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

�       (4.8) 
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We can add the two solutions to determine the heat flux in the Laplace domain subject to the temperature 
excitations 𝐹𝐹(𝑠𝑠) at 𝑥𝑥 = 0 and the temperature excitations 𝐻𝐻(𝑠𝑠) at 𝑥𝑥 = 𝐿𝐿 [m]. 
 
To determine the heat flux at 𝑥𝑥 = 0 we add equations (4.1) and 4.5): 
 

𝑄𝑄(0, 𝑠𝑠) = 𝑈𝑈(𝑠𝑠)𝐹𝐹(𝑠𝑠) + 𝑊𝑊(𝑠𝑠)𝐻𝐻(𝑠𝑠)     (4.9) 
 
To determine the heat flux at 𝑥𝑥 = 𝐿𝐿 m we add equations (4.3) and (4.7): 
 

𝑄𝑄(𝐿𝐿, 𝑠𝑠) = 𝑉𝑉(𝑠𝑠)𝐹𝐹(𝑠𝑠) + 𝑋𝑋(𝑠𝑠)𝐻𝐻(𝑠𝑠)      (4.10) 
 
Equations (4.9) and (4.10) can be written in the following matrix form: 
 

�𝑄𝑄(0, 𝑠𝑠)
𝑄𝑄(𝐿𝐿, 𝑠𝑠)� = �𝑈𝑈(𝑠𝑠) 𝑊𝑊(𝑠𝑠)

𝑉𝑉(𝑠𝑠) 𝑋𝑋(𝑠𝑠) � �𝐹𝐹(𝑠𝑠)
𝐻𝐻(𝑠𝑠)�       (4.11) 

 
Using equation (4.11), we can determine the heat fluxes 𝑄𝑄(0, 𝑠𝑠) and 𝑄𝑄(𝐿𝐿, 𝑠𝑠) on the two sides of the 
layer (the “output”) in response to the temperature excitations 𝐹𝐹(𝑠𝑠) and 𝐻𝐻(𝑠𝑠) on the two sides of the 
wall (the “input”). 
 
The functions 𝐹𝐹(𝑠𝑠) and 𝐻𝐻(𝑠𝑠) are both Laplace transforms of temperature functions. If we invert the 
coefficient matrix in (4.11) we can determine the temperatures 𝐹𝐹(𝑠𝑠) and 𝐻𝐻(𝑠𝑠) on the two sides of the 
layer in response to the heat fluxes on the two sides of the layer: 
 

�𝐹𝐹(𝑠𝑠)
𝐻𝐻(𝑠𝑠)� = �𝑈𝑈(𝑠𝑠) 𝑊𝑊(𝑠𝑠)

𝑉𝑉(𝑠𝑠) 𝑋𝑋(𝑠𝑠) �
−1

�𝑄𝑄(0, 𝑠𝑠)
𝑄𝑄(𝐿𝐿, 𝑠𝑠)�       (4.12) 

 
By rearranging (4.10), we obtain 
 

𝐹𝐹(𝑠𝑠) = −
𝑋𝑋(𝑠𝑠)
𝑉𝑉(𝑠𝑠) 𝐻𝐻(𝑠𝑠) +

1
𝑉𝑉(𝑠𝑠) 𝑄𝑄(𝐿𝐿, 𝑠𝑠)      (4.13) 

 
Eliminating 𝐹𝐹(𝑠𝑠) between (4.9) and (4.10) gives 
 

𝑄𝑄(0, 𝑠𝑠) = 𝑈𝑈(𝑠𝑠) �
𝑄𝑄(𝐿𝐿, 𝑠𝑠) − 𝑋𝑋(𝑠𝑠)𝐻𝐻(𝑠𝑠)

𝑉𝑉(𝑠𝑠) � + 𝑊𝑊(𝑠𝑠)𝐻𝐻(𝑠𝑠) 

 

= �𝑊𝑊(𝑠𝑠) −
𝑈𝑈(𝑠𝑠)𝑋𝑋(𝑠𝑠)

𝑉𝑉(𝑠𝑠) � 𝐻𝐻(𝑠𝑠) +
𝑈𝑈(𝑠𝑠)
𝑉𝑉(𝑠𝑠) 𝑄𝑄(𝐿𝐿, 𝑠𝑠)      (4.14) 

 
Equations (4.13) and (4.14) can be written in the following matrix form: 
 

�
𝐹𝐹(𝑠𝑠)

𝑄𝑄(0, 𝑠𝑠)� = �𝐴𝐴(𝑠𝑠) 𝐵𝐵(𝑠𝑠)
𝐶𝐶(𝑠𝑠) 𝐷𝐷(𝑠𝑠)� � 𝐻𝐻(𝑠𝑠)

𝑄𝑄(𝐿𝐿, 𝑠𝑠)�       (4.15) 

 
where 
 

𝐴𝐴(𝑠𝑠) = −
𝑋𝑋(𝑠𝑠)
𝑉𝑉(𝑠𝑠) 

 

𝐵𝐵(𝑠𝑠) =
1

𝑉𝑉(𝑠𝑠) 
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𝐶𝐶(𝑠𝑠) = 𝑊𝑊(𝑠𝑠) −
𝑈𝑈(𝑠𝑠)𝑋𝑋(𝑠𝑠)

𝑉𝑉(𝑠𝑠)  

 

𝐷𝐷(𝑠𝑠) =
𝑈𝑈(𝑠𝑠)
𝑉𝑉(𝑠𝑠) 

 
Substituting the equations (4.2), (4.4), (4.6), (4.8) for 𝑈𝑈(𝑠𝑠), 𝑉𝑉(𝑠𝑠), 𝑊𝑊(𝑠𝑠), 𝑋𝑋(𝑠𝑠), respectively, 
 

𝐴𝐴(𝑠𝑠) = −
𝑋𝑋(𝑠𝑠)
𝑉𝑉(𝑠𝑠) = cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�       (4.16) 

 

𝐵𝐵(𝑠𝑠) =
1

𝑉𝑉(𝑠𝑠) =
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

𝑘𝑘�𝑠𝑠/𝛼𝛼
      (4.17) 

 

𝐶𝐶(𝑠𝑠) = 𝑊𝑊(𝑠𝑠) −
𝑈𝑈(𝑠𝑠)𝑋𝑋(𝑠𝑠)

𝑉𝑉(𝑠𝑠)  

 

= −𝑘𝑘�
𝑠𝑠
𝛼𝛼 �

1
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

� +
𝑘𝑘�𝑠𝑠

𝛼𝛼 �
cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

� 𝑘𝑘�𝑠𝑠
𝛼𝛼 �

cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

�

𝑘𝑘�𝑠𝑠
𝛼𝛼 � 1

sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�
�

 

 

= −𝑘𝑘�
𝑠𝑠
𝛼𝛼

�1 − cosh2�𝐿𝐿�𝑠𝑠/𝛼𝛼��
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

 

 

= −𝑘𝑘�
𝑠𝑠
𝛼𝛼

�−sinh2�𝐿𝐿�𝑠𝑠/𝛼𝛼��
sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�

 

 
= 𝑘𝑘�𝑠𝑠/𝛼𝛼 sinh�𝐿𝐿�𝑠𝑠/𝛼𝛼�      (4.18) 

 

𝐷𝐷(𝑠𝑠) =
𝑈𝑈(𝑠𝑠)
𝑉𝑉(𝑠𝑠) = cosh�𝐿𝐿�𝑠𝑠/𝛼𝛼�       (4.19) 

 
Thus Equation (4.15) can be written 
 

� 𝐹𝐹(𝑠𝑠)
𝑄𝑄(0, 𝑠𝑠)� =

⎣
⎢
⎢
⎢
⎡ cosh �𝐿𝐿�𝑠𝑠 𝛼𝛼⁄ �

sinh �𝐿𝐿�𝑠𝑠 𝛼𝛼⁄ �

𝑘𝑘�𝑠𝑠 𝛼𝛼⁄

𝑘𝑘�𝑠𝑠 𝛼𝛼⁄ sinh �𝐿𝐿�𝑠𝑠 𝛼𝛼⁄ � cosh �𝐿𝐿�𝑠𝑠 𝛼𝛼⁄ �⎦
⎥
⎥
⎥
⎤

� 𝐻𝐻(𝑠𝑠)
𝑄𝑄(𝐿𝐿, 𝑠𝑠)� 

 

= � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� � 𝐻𝐻(𝑠𝑠)
𝑄𝑄(𝐿𝐿, 𝑠𝑠)�       (4.20) 
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where 
 

𝑀𝑀 = 𝐿𝐿�𝑠𝑠 𝛼𝛼⁄       (4.21) 
 
and 
 

𝑁𝑁 = 𝑘𝑘�𝑠𝑠 𝛼𝛼⁄       (4.22) 
 
We now have a matrix equation in the Laplace domain relating the temperature forcing terms 𝐹𝐹(𝑠𝑠) and 
𝐻𝐻(𝑠𝑠) to the heat flux terms 𝑄𝑄(0, 𝑠𝑠) and 𝑄𝑄(𝐿𝐿, 𝑠𝑠). In the next section we shall rewrite the equation in 
terms of the frequency variable 𝑗𝑗𝑗𝑗. 
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5 Cyclic surface temperature variation 
 
In problems with cyclic surface temperature variations it is necessary to modify the constants 𝑀𝑀 and 𝑁𝑁 
given by equations (4.21) and (4.22), by replacing the Laplace domain variable 𝑠𝑠 with 𝑗𝑗𝑗𝑗, where 𝑗𝑗 is 
the imaginary constant √−1, 𝑗𝑗 [rad s−1] is the angular frequency 2𝜋𝜋𝑓𝑓, and 𝑓𝑓 (cycles per second) is the 
frequency of the temperature variations: 
 

𝑀𝑀 = 𝐿𝐿�𝑗𝑗𝑗𝑗 𝛼𝛼⁄       (5.1) 
 
and 
 

𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗 𝛼𝛼⁄       (5.2) 
 
Equation (4.20) becomes 
 

�
𝐹𝐹(𝑗𝑗𝑗𝑗)

𝑄𝑄(0, 𝑗𝑗𝑗𝑗)� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� �
𝐻𝐻(𝑗𝑗𝑗𝑗)

𝑄𝑄(𝐿𝐿, 𝑗𝑗𝑗𝑗)�       (5.3) 

 
where 𝐹𝐹(𝑗𝑗𝑗𝑗) and 𝐻𝐻(𝑗𝑗𝑗𝑗) are complex temperatures and 𝑄𝑄(0, 𝑗𝑗𝑗𝑗) and 𝑄𝑄(𝐿𝐿, 𝑗𝑗𝑗𝑗) are complex heat fluxes. 
The square matrix in (5.3) is the complex transmission matrix of the slab. 
 
To apply the complex transmission matrix to the heating of buildings, we assume that the temperature 
variation on the face 𝑥𝑥 = 0 of the slab is 
 

𝐹𝐹(𝑗𝑗𝑗𝑗) = 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡) = Im�𝐴𝐴0𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�      (5.4) 
 
where 𝐴𝐴0 is the amplitude of the temperature and Im means “the imaginary part of”. The temperature 
on the opposite face 𝑥𝑥 = 𝐿𝐿 [m] is maintained at zero. If we replace 𝐹𝐹(𝑗𝑗𝑗𝑗) in (5.3) with 𝐴𝐴0 then (5.3) 
reduces to 
 

�
𝐴𝐴0

𝑄𝑄(0)� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� � 0
𝑄𝑄(𝐿𝐿)�       (5.5) 

 
where 𝑄𝑄(0) and 𝑄𝑄(𝐿𝐿) are complex constants. In Equation (5.5) 𝐴𝐴0 is used as a reference temperature 
and the phases of all the other quantities are determined with respect to the temperature 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡). 
 
From (5.5) we obtain: 
 

𝐴𝐴0 =
sinh 𝑀𝑀

𝑁𝑁
𝑄𝑄(𝐿𝐿) 

 
and 
 

𝑄𝑄(0) = 𝑄𝑄(𝐿𝐿) cosh 𝑀𝑀 
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From these two equations we obtain 
 

𝑄𝑄(0) = 𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
      (5.6) 

 
and 
 

𝑄𝑄(𝐿𝐿) = 𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
      (5.7) 

 
The instantaneous heat flux through the face at 𝑥𝑥 = 0 is 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝑄𝑄(0)𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im �𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.8) 

 
and the instantaneous heat flux through the face at 𝑥𝑥 = 𝐿𝐿 is 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝑄𝑄(𝐿𝐿)𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im �𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.9) 

 
Equations (5.4), (5.8) and (5.9) enable us to specify a sinusoidal temperature oscillation on the face at 
𝑥𝑥 = 0 of a homogeneous slab and to determine the resulting heat fluxes on the faces at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿. 
In the following worked examples the equations are applied to some practical problems. 
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Example 1 
 
A wall is made of bricks with a thickness 𝐿𝐿 of 0.105 m. The density 𝜌𝜌, specific heat capacity 𝐶𝐶, and 
thermal conductivity 𝑘𝑘 of the bricks are 1,700 kg m−3, 800 J kg−1 K−1 and 0.84 W m−1 K−1, respectively. 
Calculate the transmission matrix in Equation (5.5) for the wall. 
 
The diffusivity 𝛼𝛼 [m2 s−1] of the bricks is 
 

𝛼𝛼 =
𝑘𝑘

𝜌𝜌𝐶𝐶
=

0.84
1700 × 800

= 6.17647 × 10−7 m2s−1 

 
For diurnal temperature variations 𝑗𝑗 = 2𝜋𝜋 ÷ (60 × 60 × 24)=2𝜋𝜋/86400 rad s−1. 
 
We can use the identity �𝑗𝑗 = (1 + 𝑗𝑗) √2⁄  to rewrite (5.1) and (5.2) as follows:   
 

𝑀𝑀 = 𝐿𝐿�𝑗𝑗𝑗𝑗/𝛼𝛼 = 𝐿𝐿(1 + 𝑗𝑗)�
𝑗𝑗
2𝛼𝛼

 

 

𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗/𝛼𝛼 = 𝑘𝑘(1 + 𝑗𝑗)�
𝑗𝑗
2𝛼𝛼

 

 
The square root term is 
 

�
𝑗𝑗
2𝛼𝛼

= � 2𝜋𝜋
86400 × 2 × 6.17647 × 10−7 = 7.67269 

 
so 

𝑀𝑀 = 𝐿𝐿(1 + 𝑗𝑗)�
𝑗𝑗
2𝛼𝛼

= 0.105 × (1 + 𝑗𝑗) × 7.67269 = 0.805633(1 + 𝑗𝑗) 

 
and 

𝑁𝑁 = 𝑘𝑘(1 + 𝑗𝑗)�
𝑗𝑗
2𝛼𝛼

= 0.84 × (1 + 𝑗𝑗) × 7.67269 = 6.44506(1 + 𝑗𝑗) 

 
Thus 
 

�
𝐴𝐴0

𝑄𝑄(0)� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� � 0
𝑄𝑄(𝐿𝐿)� 

 
where 
 

𝑀𝑀 = 0.805633(1 + 𝑗𝑗) 
 
and 
 

𝑁𝑁 = 6.44506(1 + 𝑗𝑗) 
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Example 2 
 
A sinusoidal temperature variation with a mean of 0°C, an amplitude of 10°C, and a period of one day 
is applied to the face 𝑥𝑥 = 0 of the wall in Example 1. The face at 𝑥𝑥 = 𝐿𝐿 [m] is maintained at 0°C. 
Calculate the heat flux through the face at 𝑥𝑥 = 𝐿𝐿. 
 
The heat flux at 𝑥𝑥 = 𝐿𝐿 is given by (5.9): 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.9) 

 
where 𝑀𝑀 and 𝑁𝑁 were calculated in Example 1. Thus we have 
 

sinh 𝑀𝑀 = sinh[0.805633(1 + 𝑗𝑗)] 
 

=
1
2 �𝑒𝑒0.805633(1+𝑗𝑗) − 𝑒𝑒−0.805633(1+𝑗𝑗)� 

 

=
1
2 �𝑒𝑒0.805633𝑒𝑒0.805633𝑗𝑗 − 𝑒𝑒−0.805633𝑒𝑒−0.805633𝑗𝑗� 

 
= 1.11906𝑒𝑒0.805633𝑗𝑗 − 0.223403𝑒𝑒−0.805633𝑗𝑗 

 
= 1.11906(cos 0.805633 + 𝑗𝑗 sin 0.805633) − 0.223403(cos 0.805633 − 𝑗𝑗 sin 0.805633) 

 
= 0.620379 + 0.968274𝑗𝑗 

 
and 
 

𝑁𝑁
sinh 𝑀𝑀

=
6.44506(1 + 𝑗𝑗)

0.620379 + 0.968274𝑗𝑗
 

 

=
(0.620379 − 0.968274𝑗𝑗)(6.44506 + 6.44506𝑗𝑗)

(0.620379 − 0.968274𝑗𝑗)(0.620379 + 0.968274𝑗𝑗) 

 

=
3.99838 + 3.99838𝑗𝑗 − 6.24059𝑗𝑗 − 6.24059𝑗𝑗2

0.384870 − 0.937554𝑗𝑗2  

 

=
10.2390 − 2.24221𝑗𝑗

1.32242
 

 
= 7.74257 − 1.69553𝑗𝑗 

 
The complex number 𝑁𝑁/sinh𝑀𝑀 can be represented in the complex plane as shown in Figure 4. The 
amplitude of 𝑁𝑁/sinh𝑀𝑀 is 
 

Amplitude = �Re2 + Im2 = �(7.74257)2 + (−1.69553)2 = 7.92605 
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The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation at 𝑥𝑥 = 𝐿𝐿 will lag the temperature variation at 𝑥𝑥 = 𝐿𝐿, so the phase of the heat flux 
variation will be negative relative to the temperature variation. Measuring the phase from the positive 
Real axis gives 
 

Phase =  −0.215584 rad (= −12.3521°) 
 
We can now write 𝑁𝑁/sinh𝑀𝑀 as 
 

𝑁𝑁 sinh 𝑀𝑀⁄ = 7.92605[cos(−0.215584) + 𝑗𝑗 sin(−0.215584)] 
 

= 7.92605(cos 0.215584 − 𝑗𝑗 sin 0.215584) 
 

= 7.92605𝑒𝑒−𝑗𝑗0.215584      (E2. 1) 
 
 
Figure 4  Amplitude and phase of 𝑁𝑁/sinh𝑀𝑀 

 
 
 
Substituting (E2.1) into (5.9) gives 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝐴𝐴07.92605𝑒𝑒−0.215584𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im�𝐴𝐴07.92605𝑒𝑒(𝑗𝑗𝑠𝑠−0.215584)𝑗𝑗� 
 

= Im[𝐴𝐴07.92605(cos(𝑗𝑗𝑡𝑡 − 0.215584) + 𝑗𝑗 sin(𝑗𝑗𝑡𝑡 − 0.215584))] 
 

= 𝐴𝐴07.92605 sin(𝑗𝑗𝑡𝑡 − 0.215584) 
 
Thus the amplitude of the heat flux at 𝑥𝑥 = 𝐿𝐿 is 𝐴𝐴0 7.92605 = 79.2605 W m−2. The peak heat flux at 
𝑥𝑥 = 𝐿𝐿 lags the peak temperature at 𝑥𝑥 = 0 by 0.215584 rad (= 12.3521°). In terms of hours, the lag is 
24 hr × 12.3521°/360° = 0.823473 hr (49 min). 
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Example 3 
 
Repeat Examples 1 and 2, but with the specific heat capacity of the bricks reduced to 80 J kg−1 K−1. 
 
With the specific heat capacity of the bricks reduced to 80 J kg−1 K−1, the diffusivity 𝛼𝛼 [m2 s−1] of the 
bricks is 
 

𝛼𝛼 =
𝑘𝑘

𝜌𝜌𝐶𝐶
=

0.84
1700 × 80

= 6.17647 × 10−6 m2s−1 

 
Substituting into (5.1) and (5.2), 
 

𝑀𝑀 = 𝐿𝐿�𝑗𝑗𝑗𝑗/𝛼𝛼 = 0.105�𝑗𝑗2𝜋𝜋/(86400 × 6.17647 × 10−6) 
 

= 0.360290�𝑗𝑗 = 0.360290
1

√2
(1 + 𝑗𝑗) = 0.2547635(1 + 𝑗𝑗) 

 
𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗/𝛼𝛼 = 0.84�𝑗𝑗2𝜋𝜋/(86400 × 6.17647 × 10−6) 

 

= 2.88232�𝑗𝑗 = 2.88232
1

√2
(1 + 𝑗𝑗) = 2.03811(1 + 𝑗𝑗) 

 
The instantaneous heat flux through the face at 𝑥𝑥 = 𝐿𝐿 is given by (5.9) 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 

 
We now have 
 

sinh 𝑀𝑀 = sinh[0.2547635(1 + 𝑗𝑗)] 
 

=
1
2 �𝑒𝑒0.2547635(1+𝑗𝑗) − 𝑒𝑒−0.2547635(1+𝑗𝑗)� 

 

=
1
2 �𝑒𝑒0.2547635𝑒𝑒0.2547635𝑗𝑗 − 𝑒𝑒−0.2547635𝑒𝑒−0.2547635𝑗𝑗� 

 
= 0.645078𝑒𝑒0.2547635𝑗𝑗 − 0.387550𝑒𝑒−0.2547635𝑗𝑗 

 
= 0.645078(cos 0.2547635 + 𝑗𝑗 sin 0.2547635) − 0.387550(cos 0.2547635 − 𝑗𝑗 sin 0.2547635) 

 
= 0.249216 + 0.260239𝑗𝑗 
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Thus 
 

𝑁𝑁
sinh 𝑀𝑀

=
2.03811(1 + 𝑗𝑗)

0.249216 + 0.260239𝑗𝑗
 

 

=
(0.249216 − 0.260239𝑗𝑗)(2.03811 + 2.03811𝑗𝑗)

(0.249216 − 0.260239𝑗𝑗)(0.249216 + 0.260239𝑗𝑗) 

 

=
0.507929 + 0.507929𝑗𝑗 − 0.530396𝑗𝑗 − 0.530396𝑗𝑗2

0.0621087 − 0.0677245𝑗𝑗2  

 

=
1.03833 − 0.0224665𝑗𝑗

0.129833
 

 
= 7.99738 − 0.173041𝑗𝑗 

 
The complex number 𝑁𝑁/sinh𝑀𝑀 can be represented in the complex plane as shown in Figure 5. 
 
 
Figure 5  Amplitude and phase of 𝑁𝑁/sinh𝑀𝑀 

 
 
 
The amplitude of 𝑁𝑁/sinh𝑀𝑀 is 
 

Amplitude = �Re2 + Im2 = �(7.99738)2 + (−0.173041)2 = 7.99925 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation at 𝑥𝑥 = 𝐿𝐿 will lag the temperature variation at 𝑥𝑥 = 𝐿𝐿, so the phase of the heat flux 
variation will be negative relative to the temperature variation. Measuring the phase from the positive 
Real axis gives 
 

Phase =  −0.0216338 rad (= −1.23953°) 
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We can now write 𝑁𝑁/sinh𝑀𝑀 as 
 

𝑁𝑁 sinh 𝑀𝑀⁄ = 7.99925[cos(−0.0216338) + 𝑗𝑗 sin(−0.0216338)] 
 

= 7.99925(cos 0.0216338 − 𝑗𝑗 sin 0.0216338) 
 

= 7.99925𝑒𝑒−𝑗𝑗0.0216338      (E3. 1) 
 
Substituting (E3.1) into (5.9) gives 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝐴𝐴07.99925𝑒𝑒−0.0216338𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im�𝐴𝐴07.99925𝑒𝑒(𝑗𝑗𝑠𝑠−0.0216338)𝑗𝑗� 
 

= Im[𝐴𝐴07.99925(cos(𝑗𝑗𝑡𝑡 − 0.0216338) + 𝑗𝑗 sin(𝑗𝑗𝑡𝑡 − 0.0216338))] 
 

= 𝐴𝐴07.99925 sin(𝑗𝑗𝑡𝑡 − 0.0216338) 
 
Thus the amplitude of the heat flux at 𝑥𝑥 = 𝐿𝐿 is 𝐴𝐴0 7.99925 = 79.9925 W m−2. The peak heat flux at 
𝑥𝑥 = 𝐿𝐿 lags the peak temperature at 𝑥𝑥 = 0 by 0.0216338 rad (= 1.23953°). In terms of hours, the lag 
is 24 hr × 1.23953°/360° = 0.0826353 hr (5 min). The reduction in the specific heat capacity from 
800 J kg−1 K−1 to 80 J kg−1 K−1 has reduced the lag from 49 min to 5 min. 
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Example 4 
 
Calculate the heat flux through the face at 𝑥𝑥 = 0 in Example 2. 
 
The instantaneous heat flux through the face at 𝑥𝑥 = 0 is given by Equation (5.8): 
 

𝑞𝑞(0, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.8) 

 
We have 
 

tanh 𝑀𝑀 = tanh[0.805633(1 + 𝑗𝑗)] 
 

=
sinh[0.805633(1 + 𝑗𝑗)]
cosh[0.805633(1 + 𝑗𝑗)] 

 

=
1
2 �𝑒𝑒0.805633(1+𝑗𝑗) − 𝑒𝑒−0.805633(1+𝑗𝑗)�
1
2 [𝑒𝑒0.805633(1+𝑗𝑗) + 𝑒𝑒−0.805633(1+𝑗𝑗)]

 

 

=
𝑒𝑒0.805633𝑒𝑒0.805633𝑗𝑗 − 𝑒𝑒−0.805633𝑒𝑒−0.805633𝑗𝑗

𝑒𝑒0.805633𝑒𝑒0.805633𝑗𝑗 + 𝑒𝑒−0.805633𝑒𝑒−0.805633𝑗𝑗 
 

=
2.23811𝑒𝑒0.805633𝑗𝑗 − 0.446805𝑒𝑒−0.805633𝑗𝑗

2.23811𝑒𝑒0.805633𝑗𝑗 + 0.446805𝑒𝑒−0.805633𝑗𝑗 
 

=
2.23811(cos 0.805633 + 𝑗𝑗 sin 0.805633) − 0.446805(cos 0.805633 − 𝑗𝑗 sin 0.805633)
2.23811(cos 0.805633 + 𝑗𝑗 sin 0.805633) + 0.446805(cos 0.805633 − 𝑗𝑗 sin 0.805633) 

 

=
1.24076 + 1.93655𝑗𝑗
1.85972 + 1.29201𝑗𝑗

 

 

=
(1.85972 − 1.29201𝑗𝑗)(1.24076 + 1.93655𝑗𝑗)
(1.85972 − 1.29201𝑗𝑗)(1.85972 + 1.29201𝑗𝑗) 

 

=
2.30746 + 3.60144𝑗𝑗 − 1.60308𝑗𝑗 − 2.50205𝑗𝑗2

3.45856 − 1.66930𝑗𝑗2  

 

=
4.80951 + 1.99836

5.12786
 

 
= 0.937917 + 0.389707𝑗𝑗 
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Thus 
 

𝑁𝑁
tanh 𝑀𝑀

=
6.44506(1 + 𝑗𝑗)

0.937917 + 0.389707𝑗𝑗
 

 

=
(0.937917 − 0.389707𝑗𝑗)(6.44506 + 6.44506𝑗𝑗)

(0.937917 − 0.389707𝑗𝑗)(0.937917 + 0.389707𝑗𝑗) 

 

=
6.04493 + 6.04493𝑗𝑗 − 2.51168𝑗𝑗 − 2.51168𝑗𝑗2

0.879688 − 0.151871𝑗𝑗2  

 

=
8.55662 + 3.53325𝑗𝑗

1.03156
 

 
= 8.29484 + 3.42515𝑗𝑗 

 
The complex number 𝑁𝑁/tanh𝑀𝑀 can be represented in the complex plane as shown in Figure 6. 
 
 
Figure 6  Amplitude and phase of 𝑁𝑁/tanh𝑀𝑀 

 
 
 
The amplitude of 𝑁𝑁/tanh𝑀𝑀 is 
 

Amplitude = �Re2 + Im2 = �(8.29484)2 + (3.42515)2 = 8.97419 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation at 𝑥𝑥 = 0 will lead the temperature variation at 𝑥𝑥 = 0, so the phase of the heat flux 
variation will be positive relative to the temperature variation. Measuring the phase from the positive 
Real axis gives 
 

Phase =  0.391599 rad (= 22.4370°) 
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We can now write 𝑁𝑁/tanh𝑀𝑀 as 
 

𝑁𝑁 tanh 𝑀𝑀⁄ = 8.97419[cos(0.391599) + 𝑗𝑗 sin(0.391599)] 
 

= 8.97419𝑒𝑒0.391599𝑗𝑗      (E4. 1) 
 
Substituting (E4.1) into (5.8) gives 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝐴𝐴08.97419𝑒𝑒0.391599𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im�𝐴𝐴08.97419𝑒𝑒(𝑗𝑗𝑠𝑠+0.391599)𝑗𝑗� 
 

= Im[𝐴𝐴08.97419(cos(𝑗𝑗𝑡𝑡 + 0.391599) + 𝑗𝑗 sin(𝑗𝑗𝑡𝑡 + 0.391599))] 
 

= 𝐴𝐴08.97419 sin(𝑗𝑗𝑡𝑡 + 0.391599) 
 
Thus the amplitude of the heat flux at 𝑥𝑥 = 0 is 𝐴𝐴0 8.97419 = 89.7419 W m−2. The peak heat flux at 
𝑥𝑥 = 0 leads the peak temperature at 𝑥𝑥 = 0 by 0.391599 rad (= 22.4370°). In terms of hours, the lead 
is 24 hr × 22.4370°/360° = 1.49580 hr (1 hr 30 min). 
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6 Inverse complex transmission matrix 
 
If we want to find the heat fluxes into and out a homogeneous slab when the temperature oscillates on 
the side 𝑥𝑥 = 𝐿𝐿 and the temperature is zero on the side 𝑥𝑥 = 0, then we need to find the inverse of the 
complex transmission matrix: 
 

�
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

�
−1

�
𝐴𝐴0

𝑄𝑄(0)� 

 
The determinant of the complex transmission matrix is cosh2𝑀𝑀 − sinh2𝑀𝑀 = 1, so the inverse of the 
matrix can be calculated quite easily. Full details are given in the Appendix. The inverse complex 
transmission matrix is given by 
 

�
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)� = � cosh(𝑀𝑀) −
sinh(𝑀𝑀)

𝑁𝑁
−𝑁𝑁 sinh(𝑀𝑀) cosh(𝑀𝑀)

� �
𝐴𝐴0

𝑄𝑄(0)�       (6.1) 

 
We set 𝐴𝐴0 = 0 in the matrix equation, so 
 

�
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)� = � cosh(𝑀𝑀) −
sinh(𝑀𝑀)

𝑁𝑁
−𝑁𝑁 sinh(𝑀𝑀) cosh(𝑀𝑀)

� � 0
𝑄𝑄(0)�       (6.2) 

 
The matrix equation (6.2) gives 
 

𝐴𝐴𝐿𝐿 = −
sinh(𝑀𝑀)

𝑁𝑁
𝑄𝑄(0) 

 
so 
 

𝑄𝑄(0) = −𝐴𝐴𝐿𝐿
𝑁𝑁

sinh(𝑀𝑀)      (6.3) 

 
and 
 

𝑄𝑄(𝐿𝐿) = 𝑄𝑄(0) cosh 𝑀𝑀 = −𝐴𝐴𝐿𝐿
𝑁𝑁

tanh 𝑀𝑀
      (6.4) 

 
Suppose the sinusoidal temperature on the side of the homogeneous slab at 𝑥𝑥 = 𝐿𝐿 is 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝐴𝐴𝐿𝐿 sin(𝑗𝑗𝑡𝑡) = Im�𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�      (6.5) 
 
then the instantaneous heat flux through the face at 𝑥𝑥 = 0 is 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝑄𝑄(0)𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

sinh(𝑀𝑀) 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.6) 

 
and the instantaneous heat flux through the face at 𝑥𝑥 = 𝐿𝐿 is 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝑄𝑄(𝐿𝐿)𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.7) 
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Example 5 
 
A sinusoidal temperature variation with a mean of 0°C, an amplitude of 10°C, and a period of one day 
is applied to the face 𝑥𝑥 = 𝐿𝐿 of the wall in Example 1. The face at 𝑥𝑥 = 0 is maintained at 0°C. Calculate 
the heat flux through (a) the face at 𝑥𝑥 = 0 and (b) the face at 𝑥𝑥 = 𝐿𝐿. 
 
(a) The instantaneous heat flux through the face at 𝑥𝑥 = 0 is given by (6.6) 
 

𝑞𝑞(0, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

sinh(𝑀𝑀) 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.6) 

 
We have the complex constant 𝑁𝑁/sinh𝑀𝑀 from Example 2: 
 

𝑁𝑁
sinh 𝑀𝑀

= 7.74257 − 1.69553𝑗𝑗 
 
so 
 

−
𝑁𝑁

sinh 𝑀𝑀
= −7.74257 + 1.69553𝑗𝑗 

 
The complex number −𝑁𝑁/sinh𝑀𝑀 can be represented in the complex plane as shown in Figure 7. 
 
 
Figure 7  Amplitude and phase of −𝑁𝑁/sinh𝑀𝑀 
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The amplitude of −𝑁𝑁/sinh𝑀𝑀 is 
 

Amplitude = �Re2 + Im2 = �(−7.74257)2 + 1.695532 = 7.92605 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation at 𝑥𝑥 = 0 will lag the temperature variation at 𝑥𝑥 = 𝐿𝐿, so the phase of the heat flux 
variation will be negative relative to the temperature variation. Measuring the phase from the positive 
Real axis gives 
 

Phase =  −3.35718 rad (= −192.352°) 
 
We can now write −𝑁𝑁/sinh𝑀𝑀 as 
 

− 𝑁𝑁 sinh 𝑀𝑀⁄ = 7.92605[cos(−3.35718) + 𝑗𝑗 sin(−3.35718)] 
 

= 7.92605𝑒𝑒−3.35718𝑗𝑗      (E5. 1) 
 
Substituting (E5.1) into (6.6) gives 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝐴𝐴𝐿𝐿7.92605𝑒𝑒−3.35718𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im�𝐴𝐴𝐿𝐿7.92605𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−3.35718)� 
 

= 𝐴𝐴𝐿𝐿7.92605 sin(𝑗𝑗𝑡𝑡 − 3.35718) 
 
The phase lag of −3.35718 rad (= −192.352°) is the lag between the positive peak in the heat flux 
oscillations and the positive peak in the temperature oscillations. The heat flux at 𝑥𝑥 = 0 is in the negative 
𝑥𝑥 direction when the temperature oscillations at 𝑥𝑥 = 𝐿𝐿 pass through +𝐴𝐴𝐿𝐿 and a heat flux in the negative 
𝑥𝑥 direction is defined to be negative. An extra −180° has been added to the phase lag to go from the 
negative peak in the heat flux to the positive peak, as shown in Figure 8. If we remove this extra −180° 
then the phase lag becomes −12.352°. As we would expect, this is the same as the phase lag that was 
calculated in Example 2, when the temperature oscillations were on the side 𝑥𝑥 = 0. 
 
The amplitude of the heat flux at 𝑥𝑥 = 0 is 𝐴𝐴0 7.92605 = 79.2605 W m−2 and, as we would expect, is 
the same as the amplitude calculated at 𝑥𝑥 = 𝐿𝐿 in Example 2. 
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Figure 8  Temperature 𝜃𝜃 at 𝑥𝑥 = 𝐿𝐿 and heat flux 𝑞𝑞 at 𝑥𝑥 = 0 

 
 
 
 
(b) The instantaneous heat flux through the face at 𝑥𝑥 = 𝐿𝐿 is given by (6.7) 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.7) 

 
We have the complex constant 𝑁𝑁/tanh𝑀𝑀 from Example 4: 
 

𝑁𝑁
tanh 𝑀𝑀

= 8.29484 + 3.42515𝑗𝑗 
 
so 
 

−
𝑁𝑁

tanh 𝑀𝑀
= −8.29484 − 3.42515𝑗𝑗 

 
The complex number −𝑁𝑁/tanh𝑀𝑀 can be represented in the complex plane as shown in Figure 9. 
 
The amplitude of −𝑁𝑁/tanh𝑀𝑀 is 
 

Amplitude = �Re2 + Im2 = �(−8.29484)2 + (−3.42515)2 = 8.97419 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation at 𝑥𝑥 = 0 will lead the temperature variation at 𝑥𝑥 = 𝐿𝐿, so the phase of the heat flux 
variation will be positive relative to the temperature variation. Measuring the phase from the positive 
Real axis gives 
 

Phase =  3.53319 rad (= 202.437°) 
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Figure 9  Amplitude and phase of −𝑁𝑁/tanh𝑀𝑀 

 
 
 
 
We can now write −𝑁𝑁/tanh𝑀𝑀 as 
 

− 𝑁𝑁 tanh 𝑀𝑀⁄ = 8.97419[cos 3.53319 + 𝑗𝑗 sin 3.53319] 
 

= 8.97419𝑒𝑒3.53319𝑗𝑗      (E5. 2) 
 
Substituting (E5.2) into (6.7) gives 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝐴𝐴𝐿𝐿8.97419𝑒𝑒3.53319𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 
 

= Im�𝐴𝐴𝐿𝐿8.97419𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠+3.53319)� 
 

= 𝐴𝐴𝐿𝐿8.97419 sin(𝑗𝑗𝑡𝑡 + 3.53319) 
 
The phase lead of 3.53319 rad (= 202.437°) is the lead between the positive peak in the heat flux 
oscillations and the positive peak in the temperature oscillations. The heat flux at 𝑥𝑥 = 𝐿𝐿 is in the negative 
𝑥𝑥 direction when the temperature oscillations at 𝑥𝑥 = 𝐿𝐿 pass through +𝐴𝐴𝐿𝐿 and a heat flux in the negative 
𝑥𝑥 direction is defined to be negative. An extra 180° has been added to the phase lag to go from the 
negative peak in the heat flux to the positive peak. If we remove this extra 180° then the phase lead 
becomes 22.437°. As we would expect, this is the same as the phase lead that was calculated in 
Example 4, when the temperature oscillations were on the side 𝑥𝑥 = 0. 
 
The amplitude of the heat flux at 𝑥𝑥 = 𝐿𝐿 is 𝐴𝐴𝐿𝐿 8.97419 = 89.7419 W m−2 and, as we would expect, is 
the same as the amplitude calculated at 𝑥𝑥 = 0 in Example 4. 
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7 Temperature excitation on both sides of the slab 
 
We can use the principle of superposition to calculate the heat fluxes into and out of the slab when we 
have temperature oscillations on both sides. When the temperature oscillations are at 𝑥𝑥 = 0, we have 
 
at 𝑥𝑥 = 0, 
 

𝜃𝜃(0, 𝑡𝑡) = 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡) = Im�𝐴𝐴0𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�      (5.4) 
 

𝑞𝑞(0, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.8) 

 
and at 𝑥𝑥 = 𝐿𝐿, 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 0 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (5.9) 

 
where 
 

𝑀𝑀 = 𝐿𝐿�𝑗𝑗𝑗𝑗/𝛼𝛼,      𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗/𝛼𝛼 
 
When the temperature oscillations are at 𝑥𝑥 = 𝐿𝐿, we have 
 
at 𝑥𝑥 = 0, 
 

𝜃𝜃(0, 𝑡𝑡) = 0 
 

𝑞𝑞(0, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.6) 

 
and at 𝑥𝑥 = 𝐿𝐿, 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝐴𝐴𝐿𝐿 sin(𝑗𝑗𝑡𝑡) = Im�𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�      (6.5) 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (6.7) 

 
where, again, 
 

𝑀𝑀 = 𝐿𝐿�𝑗𝑗𝑗𝑗/𝛼𝛼,      𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗/𝛼𝛼 
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We can simply add together the two equations for 𝑞𝑞(0, 𝑡𝑡) and the two equations for 𝑞𝑞(𝐿𝐿, 𝑡𝑡), so 
 
at 𝑥𝑥 = 0, 
 

𝑞𝑞(0, 𝑡𝑡) = Im ��𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
−𝐴𝐴𝐿𝐿

𝑁𝑁
sinh 𝑀𝑀

� 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (7.1) 
 
and at 𝑥𝑥 = 𝐿𝐿, 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im ��𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
−𝐴𝐴𝐿𝐿

𝑁𝑁
tanh 𝑀𝑀

� 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�       (7.2) 
 
Figure 10 summarises the calculation process. 
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Figure 10  Heat fluxes due to sinusoidal temperature oscillations at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 

 
 
 
 

𝜃𝜃(0, 𝑡𝑡) = 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡) = Im[𝐴𝐴0𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠]    (5.4) 
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𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�     (5.8) 𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �𝐴𝐴0
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𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�     (5.9) 

Wall 

Wall 

Wall 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝐴𝐴𝐿𝐿 sin(𝑗𝑗𝑡𝑡) = Im[𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠]    (6.5) 

𝜃𝜃(0, 𝑡𝑡) = 0 

𝑞𝑞(0, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�     (6.6) 

 
𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿

𝑁𝑁
tanh 𝑀𝑀

𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠�     (6.7) 
 

𝜃𝜃(0, 𝑡𝑡) = 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡) = Im[𝐴𝐴0𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠]    (5.4) 
 

𝜃𝜃𝐿𝐿(𝑡𝑡) = 𝐴𝐴𝐿𝐿 sin(𝑗𝑗𝑡𝑡) = Im[𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠]    (6.5) 
 

𝑞𝑞(0, 𝑡𝑡) = Im ��𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
−𝐴𝐴𝐿𝐿

𝑁𝑁
sinh 𝑀𝑀

� 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im ��𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
−𝐴𝐴𝐿𝐿

𝑁𝑁
tanh 𝑀𝑀

� 𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠� 

(5.8) + (6.6) = (7.1) (5.9) + (6.7) = (7.2) 
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Example 6 
 
The slab in Example 1 is subjected to a daily sinusoidal temperature variation on its surface 𝑥𝑥 = 0 
having a mean of 14°C and an amplitude of 8°C. The peak in temperature occurs at 3:00 pm. The 
surface 𝑥𝑥 = 𝐿𝐿 is subjected to a daily sinusoidal temperature variation having a mean of 21°C and an 
amplitude of 6°C. The peak temperature occurs at 12:00 noon. Calculate: 
 

a. the mean heat flux through the wall, 
b. the heat fluxes on the two sides of the slab due to the temperature variation on the surface 𝑥𝑥 = 0, 
c. the heat fluxes on the two sides of the slab due to the temperature variation on the surface 𝑥𝑥 = 𝐿𝐿, 
d. the net heat fluxes on the two sides. 

 
(a) We can determine the mean heat flux from Fourier’s law: 
 

𝑞𝑞(𝑥𝑥, 𝑡𝑡) = −𝑘𝑘
𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥
 

 
Integrating with respect 𝑡𝑡 gives 
 

𝑞𝑞�(𝑥𝑥) = −
𝑘𝑘

𝑡𝑡2 − 𝑡𝑡1
�

𝜕𝜕𝜃𝜃(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

𝑠𝑠2

𝑠𝑠1

𝑑𝑑𝑡𝑡 = −𝑘𝑘
𝑑𝑑�̅�𝜃(𝑥𝑥)

𝑑𝑑𝑥𝑥
      (E6.1) 

 
where the overbar represents a time average. The time-average heat flux into and out of any layer of the 
slab must be the same otherwise the temperature of the layer will increase or decrease continually. 
Consequently, 𝑞𝑞� cannot be a function of 𝑥𝑥, and since 𝑘𝑘 is constant, the temperature gradient 𝑑𝑑�̅�𝜃 𝑑𝑑𝑥𝑥⁄  
must be constant. Integrating (E6.1) with respect to 𝑥𝑥 gives 
 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −
𝑘𝑘
𝐿𝐿

�
𝑑𝑑�̅�𝜃(𝑥𝑥)

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥

𝑚𝑚𝐿𝐿

𝑚𝑚0

= −
𝑘𝑘
𝐿𝐿

� 𝑑𝑑�̅�𝜃
𝜃𝜃�𝐿𝐿

𝜃𝜃�0

= −𝑘𝑘
�̅�𝜃𝐿𝐿 − �̅�𝜃0

𝐿𝐿
= −𝑘𝑘

𝜃𝜃𝐿𝐿 − 𝜃𝜃0

𝐿𝐿
 

 
since 𝜃𝜃0 and 𝜃𝜃𝐿𝐿 are constant. The mean heat flux 𝑞𝑞mean is therefore 
 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −0.84 ×
21 − 14

0.105
= −56 W m−2      (6.2) 

 
 
(b) From (5.4) the temperature oscillations at 𝑥𝑥 = 0 are given by 
 

𝜃𝜃(0, 𝑡𝑡) = 𝐴𝐴0 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋) = 8 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋) = Im�8 𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖)�      (E6.3) 
 
The peak in the temperature occurs at 15:00 hr, so we must subtract (15:00 − 6:00)×2𝜋𝜋/24 from the 
argument of the sine function. 
 
From (5.8) the heat flux at 𝑥𝑥 = 0 is 
 

𝑞𝑞(0, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖)�       (E6.4) 

 
and from (5.9) the heat flux at 𝑥𝑥 = 𝐿𝐿 is 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �𝐴𝐴0
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖)�       (E6.5) 
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We calculated the complex constants 𝑁𝑁/tanh𝑀𝑀 and 𝑁𝑁/sinh𝑀𝑀 in Examples 4 and 2, respectively. 
 

𝑁𝑁 tanh 𝑀𝑀⁄ = 8.97419𝑒𝑒0.391599𝑗𝑗      (E4. 1) 
 

𝑁𝑁 sinh 𝑀𝑀⁄ = 7.92605𝑒𝑒−𝑗𝑗0.215584      (E2. 1) 
 
Substituting (E4.1) into (E6.4) gives 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝐴𝐴08.97419𝑒𝑒0.391599𝑗𝑗𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖)� 
 

= Im�8 × 8.97419𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖+0.391599)� 
 

= 71.7935 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋 + 0.391599)      (E6.6) 
 
and substituting (E2.1) into (E6.5) gives 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝐴𝐴07.92605𝑒𝑒−𝑗𝑗0.215584𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖)� 
 

= Im�8 × 7.92605𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.75𝑖𝑖−0.215584)� 
 

= 63.4084 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋 − 0.215584)      (E6.7) 
 
Equations (E6.3), (E6.6) and (E6.7) are plotted in Figure 11. The heat flux at 𝑥𝑥 = 0 leads the temperature 
by 0.391599 rad (= 22.4370°), as expected, and the heat flux at 𝑥𝑥 = 𝐿𝐿 lags the temperature by 
0.215584 rad (= 12.3520°), as expected. 
 
 
Figure 11  Temperature 𝜃𝜃 at 𝑥𝑥 = 0 and heat flux 𝑞𝑞 at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 
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(c) From (6.5) the temperature oscillations at 𝑥𝑥 = 𝐿𝐿 are given by 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝐴𝐴𝐿𝐿 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋) = 6 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋) = Im�6 𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖)�      (E6.8) 
 
The peak in the temperature occurs at 12:00 hr, so we must subtract (12:00 − 6:00)×2𝜋𝜋/24 from the 
argument of the sine function. 
 
From (6.6) the heat flux at 𝑥𝑥 = 0 is 
 

𝑞𝑞(0, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

sinh 𝑀𝑀
𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖)�       (E6.9) 

 
and from (6.7) the heat flux at 𝑥𝑥 = 𝐿𝐿 is 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im �−𝐴𝐴𝐿𝐿
𝑁𝑁

tanh 𝑀𝑀
𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖)�       (E6.10) 

 
We calculated the complex constants −𝑁𝑁/sinh𝑀𝑀 and −𝑁𝑁/tanh𝑀𝑀 in Example 5. 
 

− 𝑁𝑁 sinh 𝑀𝑀⁄ = 7.92605𝑒𝑒−3.35718𝑗𝑗      (E5.1) 
 

− 𝑁𝑁 tanh 𝑀𝑀⁄ = 8.97419𝑒𝑒3.53319𝑗𝑗      (E5.2) 
 
Substituting (E5.1) into (E6.9) gives 
 

𝑞𝑞(0, 𝑡𝑡) = Im�𝐴𝐴𝐿𝐿7.92605𝑒𝑒−3.35718𝑗𝑗𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖)� 
 

= Im�6 × 7.92605𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖−3.35718)� 
 

= 47.5563 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋 − 3.35718)      (E6.11) 
 
and substituting (E5.2) into (E6.10) gives 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = Im�𝐴𝐴𝐿𝐿8.97419𝑒𝑒3.53319𝑗𝑗𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖)� 
 

= Im�6 × 8.97419𝑒𝑒𝑗𝑗(𝑗𝑗𝑠𝑠−0.5𝑖𝑖+3.53319)� 
 

= 53.8451 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋 + 3.533199)      (E6.12) 
 
Equations (E6.8), (E6.11) and (E6.12) are plotted in Figure 12. The heat flux at 𝑥𝑥 = 0 lags the 
temperature by 3.35718 rad (= 192.3520° = 180° + 12.3520°), as expected, and the heat flux at 
𝑥𝑥 = 𝐿𝐿 leads the temperature by 3.53319 rad (= 202.4370° = 180° + 22.4370°), as expected. 
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Figure 12  Temperature 𝜃𝜃 at 𝑥𝑥 = 𝐿𝐿 and heat flux 𝑞𝑞 at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 

 
 
 
(d) The net heat flux at the surface 𝑥𝑥 = 0 is the sum of (E6.2), (E6.6) and (E6.11): 
 

𝑞𝑞(0, 𝑡𝑡) = −56 + 71.7935 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋 + 0.391599) 
 

+ 47.5563 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋 − 3.35718)      (E6.13)) 
 
The net heat flux at the surface 𝑥𝑥 = 𝐿𝐿 is the sum of (E6.2), (E6.7) and (E6.12): 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = −56 + 63.4084 sin(𝑗𝑗𝑡𝑡 − 0.75𝜋𝜋 − 0.215584) 
 

+ 53.8451 sin(𝑗𝑗𝑡𝑡 − 0.5𝜋𝜋 + 3.533199)      (E6.14)) 
 
The net heat fluxes 𝑞𝑞(0, 𝑡𝑡) and 𝑞𝑞(𝐿𝐿, 𝑡𝑡) are plotted in Figure 13. The curves are consistent with Figures 
11 and 12 and equations (E6.13) and (E6.14). 
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Figure 13  Net heat flux 𝑞𝑞 at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 
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9 Appendix 
 
In this Appendix we describe the operations needed to calculate the inverse of a matrix. We shall assume 
that the reader is familiar with the definition of a matrix and the matrix operations of addition, 
subtraction, and multiplication. At the end of the Appendix we shall calculate the inverse of the complex 
transmission matrix (6.1). 
 

9.1 Transpose of a matrix 
 
A square matrix of order 𝑛𝑛 is a square array of numbers having 𝑛𝑛 rows and 𝑛𝑛 columns: 
 

𝑨𝑨 = �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

⋯ 𝑎𝑎1𝑚𝑚
⋯ 𝑎𝑎2𝑚𝑚⋯ ⋯

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2

⋯ ⋯
⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

�       (9.1) 

 
The transpose of the matrix 𝑨𝑨 is denoted by 𝑨𝑨𝑇𝑇. It is obtained by interchanging the rows and columns 
so that if 𝑨𝑨 = (𝑎𝑎𝑗𝑗𝑘𝑘) then 𝑨𝑨𝑇𝑇=(𝑎𝑎𝑘𝑘𝑗𝑗). If a square matrix 𝑨𝑨 is 
 

𝑨𝑨 = �
3 9 −1
7 4 3
4 −6 2

� 

 
then 𝑨𝑨𝑇𝑇 is 
 

𝐴𝐴𝑇𝑇 = �
3 7 4
9 4 −6

−1 3 2
� 

 

9.2 Determinant of a matrix 
 
If 𝑨𝑨 is a square matrix of order 𝑛𝑛, then the determinant of 𝑨𝑨 or det(𝑨𝑨) is a number which we write as 
 

det(𝑨𝑨) = �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

⋯ 𝑎𝑎1𝑚𝑚
⋯ 𝑎𝑎2𝑚𝑚⋯ ⋯

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2

⋯ ⋯
⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

�       (9.2) 

 
If det(𝑨𝑨) = 0 then the square matrix is called a singular matrix. For any element 𝑎𝑎𝑗𝑗𝑘𝑘 in the determinant, 
we can define a new determinant of order 𝑛𝑛 – 1, called the minor of 𝑎𝑎𝑗𝑗𝑘𝑘, which we obtain by removing 
all the elements in the 𝑗𝑗th row and the 𝑘𝑘th column. 
 
If a fourth-order determinant is 
 

det(𝑨𝑨) = �
3 7

11 −2
−1 7
8 5

2 9
−8 4

12 2
3 −1

�       (9.3) 

 
then the minor of the element 9 in the third row and the second column of the determinant is 
 

�
3 −1 7

11 8 5
−8 3 −1

� 
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If we multiply the minor of the element 𝑎𝑎𝑗𝑗𝑘𝑘 by (−1)𝑗𝑗+𝑘𝑘 then the result is called the cofactor of 𝑎𝑎𝑗𝑗𝑘𝑘 and 
is denoted by 𝐴𝐴𝑗𝑗𝑘𝑘. The cofactor 𝐴𝐴32 of the element 𝑎𝑎32 in the fourth-order determinant is therefore 
 

𝐴𝐴32 = (−1)3+2 �
3 −1 7

11 8 5
−8 3 −1

� = − �
3 −1 7

11 8 5
−8 3 −1

� 

 
We can calculate the value of a determinant, in either of two ways. We can take the elements in any 
row, multiply the elements by their cofactors, and then sum the results. Suppose we take the second 
row of the fourth-order determinant (9.3). We obtain 
 

det(𝑨𝑨) = � 𝑎𝑎2𝑘𝑘𝐴𝐴2𝑘𝑘

4

𝑘𝑘=1

 

 
= 𝑎𝑎21𝐴𝐴21 + 𝑎𝑎22𝐴𝐴22 + 𝑎𝑎23𝐴𝐴23 + 𝑎𝑎24𝐴𝐴24 

 

= 11 × (−1)2+1 × �
7 −1 7
9 12 2
4 3 −1

� + (−2) × (−1)2+2 × �
3 −1 7
2 12 2

−8 3 −1
� 

 

+ 8 × (−1)2+3 × �
3 7 7
2 9 2

−8 4 −1
� + 5 × (−1)2+4 × �

3 7 −1
2 9 12

−8 4 3
� 

 

= −11 �
7 −1 7
9 12 2
4 3 −1

� − 2 �
3 −1 7
2 12 2

−8 3 −1
� − 8 �

3 7 7
2 9 2

−8 4 −1
� + 5 �

3 7 −1
2 9 12

−8 4 3
�       (9.4) 

 
To progress further, we must evaluate each of the four third-order determinants in (9.4). We will 
evaluate the determinants based on the elements in the first row. 
 
For the first determinant we obtain 
 

�
7 −1 7
9 12 2
4 3 −1

� = � 𝑎𝑎1𝑘𝑘𝐴𝐴1𝑘𝑘

3

𝑘𝑘=1

 

 
= 𝑎𝑎11𝐴𝐴11 + 𝑎𝑎12𝐴𝐴12 + 𝑎𝑎13𝐴𝐴13 

 
= 7 × (−1)1+1 × �12 2

3 −1� + (−1) × (−1)1+2 × �9 2
4 −1� + 7 × (−1)1+3 × �9 12

4 3 � 
 
The second-order determinants are: 
 

�12 2
3 −1� = 12 × (−1)1+1 × (−1) + 2 × (−1)1+2 × 3 = −18 

 
�9 2
4 −1� = 9 × (−1)1+1 × (−1) + 2 × (−1)1+2 × 4 = −17 

 
�9 12
4 3 � = 9 × (−1)1+1 × 3 + 12 × (−1)1+2 × 4 = −21 

 
 
 
 



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

53 
 

so 
 

�
7 −1 7
9 12 2
4 3 −1

� = 7 × (−1)1+1 × (−18) + (−1) × (−1)1+2 × (−17) + 7 × (−1)1+3 × (−21) 

 
= −290 

 
In a similar way, we can obtain the values of the other third-order determinants: 
 

�
3 −1 7
2 12 2

−8 3 −1
� = 674 

 

�
3 7 7
2 9 2

−8 4 −1
� = 411 

 

�
3 7 −1
2 9 12

−8 4 3
� = −857 

 
Substituting the values of the third-order determinants into (10.4) gives 
 

det(𝑨𝑨) = −11 × (−290) − 2 × 674 − 8 × 411 + 5 × (−857) 
 

= −5731 
 
In the second method of evaluating the determinant, we can take the elements in any column, multiply 
the elements by their cofactors, and then sum the results. 
 
Suppose we take the third column of the fourth-order determinant (9.3). We obtain 
 

det(𝑨𝑨) = � 𝑎𝑎𝑗𝑗3𝐴𝐴𝑗𝑗3

4

𝑗𝑗=1

 

 
= 𝑎𝑎13𝐴𝐴13 + 𝑎𝑎23𝐴𝐴23 + 𝑎𝑎33𝐴𝐴33 + 𝑎𝑎43𝐴𝐴43 

 

= −1 × (−1)1+3 × �
11 −2 5
2 9 2

−8 4 −1
� + 8 × (−1)2+3 × �

3 7 7
2 9 2

−8 4 −1
� 

 

+12 × (−1)3+3 × �
3 7 7

11 −2 5
−8 4 −1

� + 3 × (−1)4+3 × �
3 7 7

11 −2 5
2 9 2

� 

 
= −1 × 241 − 8 × 411 + 12 × (−61) − 3 × 490 

 
= −5731 

 
as expected. 
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9.3 Unit matrix 
 
The unit matrix 𝐼𝐼 is a square matrix in which all the elements of the principal diagonal are equal to 1 
while all the other elements are zero. The fourth-order unit matrix is 
 

𝑰𝑰 = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

� 

 

9.4 Inverse of a matrix 
 
If 𝑨𝑨 is a square matrix of order 𝑛𝑛 and is non-singular (i.e. det(𝑨𝑨) ≠ 0), then there exists a unique inverse 
𝑨𝑨−1 such that 𝑨𝑨 𝑨𝑨−1  = 𝑨𝑨−1 𝑨𝑨 = 𝐼𝐼 and we can determine 𝑨𝑨−1 from 
 

𝑨𝑨−1 =
�𝐴𝐴𝑗𝑗𝑘𝑘�𝑇𝑇

det(𝑨𝑨) 

 
where (𝐴𝐴𝑗𝑗𝑘𝑘) is the matrix of the cofactors 𝐴𝐴𝑗𝑗𝑘𝑘 of 𝑨𝑨 and (𝐴𝐴𝑗𝑗𝑘𝑘)𝑇𝑇 = 𝐴𝐴𝑘𝑘𝑗𝑗 is its transpose. 
 
Consider the third-order square matrix: 
 

𝑨𝑨 = �
9 −3 1
2 11 7

−1 2 −5
� 

 
The determinant of the matrix det(𝑨𝑨) is 
 

det(𝑨𝑨) = � 𝑎𝑎1𝑘𝑘𝐴𝐴1𝑘𝑘

3

𝑘𝑘=1

= 𝑎𝑎11𝐴𝐴11 + 𝑎𝑎12𝐴𝐴12 + 𝑎𝑎13𝐴𝐴13 

 
= 9 × (−1)1+1 × �11 7

2 −5� − 3 × (−1)1+2 × � 2 7
−1 −5� + 1 × (−1)1+3 × � 2 11

−1 2 � 
 

9 × (−69) + 3 × (−3) + 1 × 15 
 

= −615 
 
The matrix of the cofactors (𝐴𝐴𝑗𝑗𝑘𝑘) is 
 

�𝐴𝐴𝑗𝑗𝑘𝑘� =

⎣
⎢
⎢
⎢
⎢
⎡(−1)1+1 �11 7

2 −5� (−1)1+2 � 2 7
−1 −5� (−1)1+3 � 2 11

−1 2 �

(−1)2+1 �−3 1
2 −5� (−1)2+2 � 9 1

−1 −5� (−1)2+3 � 9 −3
−1 2 �

(−1)3+1 �−3 1
11 7� (−1)3+2 �9 1

2 7� (−1)3+3 �9 −3
2 11 � ⎦

⎥
⎥
⎥
⎥
⎤

 

 

= �
−69 3 15
−13 −44 −15
−32 −61 105

� 
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The inverse of 𝑨𝑨 is 
 

𝑨𝑨−1 =
�𝐴𝐴𝑗𝑗𝑘𝑘�𝑇𝑇

det(𝑨𝑨) 

 

=
−1
615 �

−69 −13 −32
3 −44 −61

15 −15 105
� 

 

=

⎣
⎢
⎢
⎢
⎢
⎡

69
615

13
615

32
615

−3
615

44
615

61
615

−15
615

15
615

−105
615 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
We can check that the inverse of 𝑨𝑨 has been calculated correctly by multiplying 𝑨𝑨−1 by 𝑨𝑨: 
 

𝑨𝑨−1𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡

69
615

13
615

32
615

−3
615

44
615

61
615

−15
615

15
615

−105
615 ⎦

⎥
⎥
⎥
⎥
⎤

�
9 −3 1
2 11 7

−1 2 −5
� 

 

=

⎣
⎢
⎢
⎢
⎢
⎡

69 × 9 + 13 × 2 + 32 × (−1)
615

69 × (−3) + 13 × 11 + 32 × 2
615

69 × 1 + 13 × 7 + 32 × (−5)
615

−3 × 9 + 44 × 2 + 61 × (−1)
615

−3 × (−3) + 44 × 11 + 61 × 2
615

−3 × 1 + 44 × 7 + 61 × (−5)
615

−15 × 9 + 15 × 2 − 105 × (−1)
615

−15 × (−3) + 15 × 11 − 105 × 2
615

−15 × 1 + 15 × 7 − 105 × (−5)
615 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

= �
1 0 0
0 1 0
0 0 1

� 

 
= 𝑰𝑰 

 
as expected. 
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9.5 Inverse of the complex transmission matrix for a uniform slab 
 
The complex transmission matrix for a uniform slab is given by (5.3): 
 

�
𝐴𝐴𝑜𝑜

𝑄𝑄(0)� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� �
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)� 

 
The square matrix 𝑨𝑨 is 
 

𝑨𝑨 = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� 

 
so the inverse of 𝑨𝑨 is 
 

𝑨𝑨−1 =
�𝐴𝐴𝑗𝑗𝑘𝑘�𝑇𝑇

det(𝑨𝑨) 

 
The determinant det(𝑨𝑨) of 𝑨𝑨 is 
 

det(𝑨𝑨) = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� 

 

= � 𝑎𝑎1𝑘𝑘𝐴𝐴1𝑘𝑘

2

𝑘𝑘=1

 

 

= cosh 𝑀𝑀 × (−1)1+1 × cosh 𝑀𝑀 +
sinh 𝑀𝑀

𝑁𝑁
× (−1)1+2 × 𝑁𝑁 sinh 𝑀𝑀 

 
cosh2𝑀𝑀 − sinh2𝑀𝑀 

 
= 1 

 
The matrix of cofactors (𝐴𝐴𝑗𝑗𝑘𝑘) is 
 

�𝐴𝐴𝑗𝑗𝑘𝑘� = �
(−1)1+1 × cosh 𝑀𝑀 (−1)1+2 × 𝑁𝑁 sinh 𝑀𝑀

(−1)2+1 ×
sinh 𝑀𝑀

𝑁𝑁
(−1)2+2 × cosh 𝑀𝑀

� 

 

= �
cosh 𝑀𝑀 −𝑁𝑁 sinh 𝑀𝑀

−
sinh 𝑀𝑀

𝑁𝑁
cosh 𝑀𝑀 � 

 
and the transpose of the matrix of cofactors (𝐴𝐴𝑗𝑗𝑘𝑘)𝑇𝑇 is 
 

�𝐴𝐴𝑗𝑗𝑘𝑘�𝑇𝑇 = � cosh 𝑀𝑀 −
sinh 𝑀𝑀

𝑁𝑁
−𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� 
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Finally, the inverse of 𝑨𝑨 is 
 

𝑨𝑨−1 =
�𝐴𝐴𝑗𝑗𝑘𝑘�𝑇𝑇

det(𝑨𝑨) 

 

=
1
1 � cosh 𝑀𝑀 −

sinh 𝑀𝑀
𝑁𝑁

−𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀
� 

 

= � cosh 𝑀𝑀 −
sinh 𝑀𝑀

𝑁𝑁
−𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� 
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