ATKINSON SCIENCE THEORY GUIDE

Admittance Method

1 One-Dimensional Transient Heat Conduction

Keith Atkinson

23 October 2020

Atkinson Science welcomes your comments on this Theory Guide. Please send an
email to keith.atkinson@atkinsonscience.co.uk.



mailto:keith.atkinson@atkinsonscience.co.uk

ATKINSON SCIENCE LIMITED THEORY GUIDE



ATKINSON SCIENCE LIMITED THEORY GUIDE

Contents
L 113 (0 Yo 1D (o710 1 s BTSRRI 5
2 Differential equation of one—dimensional heat conduction.............ccceeeeiierciieiciieniiecee e, 7
3 Properties of the differential @qUAtiON...........cceevcieeciiiriierieierere e sre e snees 11
3.1 Definition of a linear partial differential equation ............c.cceveeeviiirciieicieeceecee e 11
3.2 Boundary—value ProblemS .........ccccevcieriiiciieiieiierieeseesee e sreereeteeseesseesssessseenseenseensaessaens 11
33 SUPETPOSILION PIINCIPLE ..eeeveiieciiieeciiieeiie ettt ettt et e erre e s e e e teeeseseeesbae e eseesssesessseessseaans 12
4 DImenSIONIESS fOIM .....c.ciiiiiiieiiieriieiee et ete ettt et e st e e e s e estaestaesseesssesssessseesseesseesssensss 13
S5 EXAMPIE 1 oottt e b e e bt e e bae e tbeeebae e rbeeaabaeeabeennraeans 15
(O = €111 o) (3SR 27
A > ;1111 o (S USROS 33
I NG 1S (o) 117 RSO PTUPUPRRUSR 37
L N o 0T34 14§ b USRS 39
Figures
Figure 1 Flow of heat into a planar building Structure ..............ccccooeiiiiiiciceeeeee 7
Figure 2 Flow of heat through a thin planar layer ..., 8
Figure 3 6(X,T) vs. X and Q2T for oscillations on the outer surface of the steel plate............ 20
Figure 4 6(X,T) vs. X and 02T for oscillations on the outer surface of the timber board........ 25
Figure 5 6(X,T) vs. X and QT for oscillations on the inner surface of the timber board........ 29
Figure 6 O(X, T) vs. X and QT for oscillations on both sides of the timber board.................... 31
Figure 7 Solutions to the third and fourth boundary-value problems ............c.ccooveiiiiienenin. 34
Figure 8 6(X, T) vs. X and QT with straight-line mean value................cccocoiieiniiniinc, 35
Tables
Table 1 6(X,T) vs. X and QT for oscillations on the outer surface of the steel plate.............. 19
Table 2 6(X,T) vs. X and QT for oscillations on the outer surface of the timber board......... 24
Table 3 6(X,T) vs. X and QT for oscillations on the inner surface of the timber board ......... 28
Table 4 6(X,T) vs. X and QT for oscillations on both sides of the timber board..................... 30



ATKINSON SCIENCE LIMITED THEORY GUIDE



ATKINSON SCIENCE LIMITED THEORY GUIDE

1 Introduction

All building materials have thermal mass, which is the ability to store heat. In general, dense materials
have a higher thermal mass than light materials. Concrete has a large thermal mass, so on a hot
summer’s day it can absorb a large quantity of heat from the environment without undergoing a large
temperature change. Then in the evening it can release the heat back to the environment. In this way,
the concrete acts to shield the building from large fluctuations in temperature.

Concrete inside a building can reduce night-time cooling by releasing heat absorbed during the day.
However, the concrete can only be effective if its surface is exposed to the internal environment. An
air-cavity and an outer layer of plasterboard will act to insulate the concrete and reduce its effectiveness.

Designers of buildings often make use of thermal mass as a way of regulating the internal temperature
of a building. Given a fluctuation in temperature on one or both sides of a building structure, it is
possible to determine the heat fluxes from the two sides that will result. One of the most popular
methods of determining the heat fluxes is the admittance method. The admittance method is strictly
only valid when the heat flow is one-dimensional. In construction, this requirement is not particularly
limiting. Most of the structures that make up a building are large planar structures and the direction of
heat flow is only significant in the direction normal to the outer surfaces.

In this theory guide we shall derive the equation of one-dimensional transient heat conduction through
a composite wall. Then we will show how the time-varying temperature can be calculated for the case
of a slab with uniform properties when a sinusoidal temperature variation is applied to one side and the
temperature of the other side is held constant.

The mathematical analysis becomes much more complicated when it is applied to a composite slab.
However, designers involved in calculations of thermal mass are usually more interested in the heat
fluxes into and out of a structure than in the time-varying temperature profile through it. The admittance
method is particularly appealing because it calculates the heat fluxes but avoids the task of calculating
the temperature profile. The second, third and fourth reports in this series, Refs. [1] to [3], set out the
mathematical basis of the admittance method. The fifth report, Ref. [4], shows how the admittance
method can be used to calculate three important dynamic thermal parameters of a planar composite
structure: the decrement factor and its time lag, the thermal admittance and its time lead, and the surface
factor and its time lag. For many common composite structures these parameters have been tabulated.
Ref. [5] gives tables of parameter values for different types of walls, roofs, etc. All of the theory guides
contain numerous worked examples which highlight the key principles in the text and illustrate how the
method is used.
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2 Differential equation of one—dimensional heat conduction

In this theory guide we shall derive the differential equation of transient one-dimensional heat
conduction. We shall then solve the equation in order to determine the temperature in a flat plate when
a sinusoidal oscillation in temperature is applied to one side of the plate and the temperature on the
other side is held constant.

The mathematics includes partial differential equations (PDEs), the solution of boundary-value
problems involving PDEs, and algebra involving complex numbers. All of these subjects are covered
in most textbooks on advanced mathematics for engineers and scientists. Ref. [6] covers all of the
mathematics in this report and others in this series on the admittance method.

The envelope of a building typically consists of planar structures whose height and width are much
greater than their thickness. The structure may be built up from several layers of different materials as
shown in Figure 1. To a close approximation, we may assume that the flow of heat is only significant
in the direction x normal to the two faces of the structure. In this report and succeeding reports in this
series we shall take x to be zero on the outdoor surface of the wall and x to be equal to L on the indoor
surface. A heat flow Q will be taken to be positive if it is in the positive x direction.

Figure 1 Flow of heat into a planar building structure

0 L x [m]

Assuming that all the layers are solids, then the flow of heat will be by thermal conduction. Each layer
has its own thermal properties: density p, specific heat capacity C, and thermal conductivity k. If there
is an air layer there may also be some heat flow by convection, but we can usually specify an equivalent
thermal conductivity which accounts for the convection. Since the thermal properties vary from layer
to layer, we must regard them as functions of x: p = p(x), C = C(x), k = k(x).
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To derive the differential equation of heat conduction through the structure, we must consider a thin
planar layer with infinitesimal thickness dx [m] and thermal properties p(x) [kg m—3], C(x) [J kg—1 K-1]
and k(x) [W m~-1 K-1], as shown in Figure 2.

Figure 2 Flow of heat through a thin planar layer

Q— Q+dQ

Ll

The heat flow Q [W] into the left—hand face of the layer is given by Fourier’s law:

=—-Ak(x) o
¢= x d0x
where A [m?] is the facial area of the layer. The heat flow out of the right—hand face is given by

aQ

40 = Dy = . a0 0 . 09d
Q+ Q—Q+a x = —A (x)a—Aa[ (x)a] X

The net rate of heat inflow is therefore

96 0 o 96
0—(0+dQ) =—A k(x)a+Ak(x)&+Aa[k(x)a]dx

Lo 00
- [k(x) &] Adx  (2.1)
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Heat may be stored in the layer or released in the layer. If the temperature of the layer rises at the rate
d6/0t then the rate of energy storage is

00
dQ = mC(x)E (2.2)

where m [kg] is the mass of the layer, which is given by
m=px)Adx (2.3)

Substituting (2.3) into (2.2) gives
00
dQ = p(x)C(x)EA dx (2.4)

The net rate of heat inflow must be equal to the rate of heat storage, so we can equate (2.1) and (2.4):

06 0 06
p(x)C(x)aA dx = P [k(x) a] Adx

or

a0 ad a0
PEICE) S == [k(x) a] (2.5)

This is the one—dimensional equation of transient heat conduction for a material whose thermal
properties vary in the heat flow direction. If the thermal properties are constant, then (2.5) simplifies to

00 926

E = aﬁ (26)

where @ = k/(pC) [m2 s—1] is the (constant) thermal diffusivity of the material.
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3 Properties of the differential equation

3.1 Definition of a linear partial differential equation
The general linear partial differential equation of order two in two independent variables has the form

A62u+B 0" +Cazu+Dau+Eau+F =G (3.1)
0x? dx dy y? dx oy = ’

where A, B, ..., G may depend on x and y but not on u. A second order equation with independent
variables x and y which does not have the form (3.1) is called nonlinear. If G = 0 the equation is called
homogeneous, while if G # 0 the equation is called non—homogeneous.

From the foregoing definitions it follows that the one—dimensional equation of transient heat conduction
for a uniform solid (2.6) is a homogeneous linear partial differential equation of order two.

3.2 Boundary-value problems

In a boundary—value problem involving a partial differential equation we try to find a solution of the
equation subject to boundary conditions.

Suppose the temperature is made to oscillate on the side x = 0 of a solid wall with uniform properties
so that 6(0, t) = A coswt and the temperature is held constant at zero on the side x = L so that
O(L,t) = 0. At t = 0, the temperature is zero so 8(x, 0) = 0. The boundary—value problem is to find
the temperature 8(x, t) in the region 0 < x < L, t > 0 that satisfies the partial differential equation

% _ 0% 0<x<Lt>0 3.2)
ot~ “ox? e (3

subject to the boundary conditions
0(0,t) =Acoswt t=0 (3.3)

O(L,t)=0 t>0 (3.4)

0(x,0)=0 0<x<L (35)

11
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3.3 Superposition principle

This principle states that if ui, uz, ... , un are solutions of a homogeneous linear partial differential
equation, then ¢1 u1 + c2 Uz + ... + cn U, Where ¢y, c2, ..., cn are constants is also a solution.

Suppose the temperature is made to oscillate on both sides of a solid wall with uniform properties so
that 8(0, t) = A coswt and 8(L, t) = B cos(wt + ¢). At t = 0, the temperature is zero as before so
0(x,0) =0. To find the solution of this boundary—value problem we can invoke the superposition
principle and add the solution of the boundary—value problem (3.2), ..., (3.5) to the solution of the
boundary—value problem:

08 _ B8 icLi>0 (36
ot Y oxz XS5 (36)

6(0,t)=0 t=0 (3.7)
6(L,t) =Bcos(wt+¢) t=0 (3.8
0(x,00=0 0<x<L (3.9)

Now suppose on the side x = 0 the temperature oscillates about 8 = 8 so that (0, t) = 8o + A coswt
and on the side x = L the temperature oscillates about 8 = 8, so that 8(L, t) = 6. + B cos(wt + ¢). We
can solve this boundary value problem by adding the solutions (3.2), ..., (3.5) and (3.6), ..., (3.9) to the
solution of the boundary—value problem:

9 _ B8 e cit>0 (310
ot~ Y oxz s b (3.10)

0(0,)=6, t=>0 (3.11)

o(Lt)=6, t>0 (3.12)

0(x,00=0 0<x<L (3.13)

12
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4 Dimensionless form

Mathematicians have discovered analytical solutions to a number of boundary—values problems
involving the constant—property equation (2.6). When a boundary—value problem involves the
variable—property equation (2.5), then very often there is no analytical solution and mathematicians
have to resort to a numerical method. Whether an analytical method or a numerical method is employed,
the process of solving for the time—varying temperature profile involves a considerable number of
individual calculations.

If we put (2.6) into dimensionless form before solving a particular boundary—value problem, then the
solution generated can be applied to the same boundary—value problem, but with different dimensional
values of length, time, and temperature, provided the dimensionless values of the independent variables
are the same. Consequently, when an analytical solution is found, wherever possible, it is based on the
dimensionless equation and expressed in dimensionless form.

Recalling the constant—property equation (2.6),

a6 920 2.6)
—=a=— .

ot d0x?

This gives the temperature 6 at a distance x after a time ¢ in a slab with thermal diffusivity . Suppose
we let L represent the thickness of the slab and 6, a particular temperature, say the maximum or
minimum temperature at time zero. Then let t, be a timescale that we shall define later. We can form
the dimensionless variables X, T and O:

X_X
L
t
T=—
tO
9_9
=

In this report we shall always take 8, = 1°C. The derivative d8/0dt on the left—hand side of (2.6) can be
expressed in terms of T and O as follows.

90 dTa(e6,) 6,00
= =2 (41)
at dt oT  t,dT

The derivative 926 /0x? on the right—hand side of (2.6) can be expressed in terms of X and O as follows.
First, take

06 060X 061
dx 90X dx O9XL

then take

920 @ (860\ dX 8 (196\ 103%0 0,026
(Ge) = @eox ax) = paw = v 42

ax?  ox\ox)  dxox\Lox) 129x? 12 0x?

13
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Substituting (4.1) and (4.2) into (2.6) gives

0,00 6,020
t,dT " 120X2

or

06 t,0°0
or ~ Y12 ox?

If we define t, as L2/a then we have the dimensionless form of (2.6):

06 920 (4.3)
oT  0X? '
Solving this equation yields 6(X, T).

Suppose a slab has thermal diffusivity a and thickness L and one side is subjected to a sinusoidal
temperature oscillation about zero with amplitude 6,. The other side of the slab is kept at zero
temperature. To obtain the solution 8(x, t) from O(X, T), we convert the dimensionless independent
variables X and T to the dimensional independent variables x and t:

x = XL

2
t=Tt0=TE

Then for each 6 at X and T, we have 8 = 66, at x and t.

14
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5 Example 1
A steel plate has a thickness L of 20 mm. On the outer surface of the plate, x = 0, the temperature is
made to oscillate sinusoidally about 0°C with a period of 10 minutes and an amplitude of 50°C. On the

inner surface, x = L, the temperature is held constant at 0°C. The plate is initially at 0°C.

(a) Calculate the temperature in the plate once sufficient time has elapsed for the temperature to become
periodic. The plate has the thermal properties p = 7800 kgm—3, C =480 kg1 K-,k =45W m-1 K-1.

(b) Repeat the calculation for a timber board of the same thickness. The board has the thermal
properties p = 480 kgm-3, C = 1680 ] kg1 K-1, k=0.12 Wm-1K-1.

(a) To solve this problem we can make use of the following boundary—value problem in dimensionless
form:

69—629 0<X<1,T>0
aT  9X2 ’
6(0,T) =AgcosQT t=0
6(1,T)=0 T=0
6(X,0)=0 0<X<1
The dimensionless temperature O in the slab is initially zero everywhere. After a period of time has
elapsed the initial state of the slab will have negligible influence on the temperature in the slab and the
temperature will become periodic. When this is the case we would expect O (X, T) to have the form:
0(X,T) = A(X) cos[QT + ¢(X)] (5.1)
We can write this equation as
O(X,T) = Re{A(X)e/?X)ei2T} = Re{U(X)e "}

where

UX) = A(X)e/®X)

and j = v—1. Ref. [7] gives the following equation for the complex function U(X):

exp [\/g 1+, —X)] — exp [—\/g(l +)(1 —X)]
exp [\/g(l +j)] — exp [—\/g(l +j)]

UX) = 4,

(5.2)

15
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The amplitude A(X) of 6(X, T) is then

AX) = {Re[UCOHT}? + {Im[UX)]}2

and the phase ¢(X) of O(X, T) is

Im[U(X)]
¢(X) = arctan {m}

In the Appendix we show how to separate the real part of U(X) from the imaginary part so that A(X)
and ¢ (X) can be calculated and we can plot 6(X, T) using (5.1).

The period of the oscillations p is 10 minutes (600 s). The period is a timescale, so it must be made
dimensionless as follows:

p _bpa
P:—:—
t, L?

The angular frequency term 2 in (5.1) and (5.2) is then

Q_Zn_ZnLZ
P pa

We can use the solution of (5.1) to solve any boundary—value problem like the present one, provided (2
is the same. We can consider any amplitude because the solution is linear in Ao.

The thermal diffusivity a of the steel plate is

k 45

= =1202%x10 ¢ m?s?
oC 7800 x 480 ms

a

so the angular frequency term {2 is

21 % 0.022

2= 500 % 12.02 x 10-¢

= 0.3485 rad

16
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From the Appendix
U = A (e* —e ) cosale* ) — =1 cosa(l — X) + (e® + e ) sina [e¥1X) + =21 D]sina(1 — X)
- (e* —e~%)2cos?a + (e? + e~2)?sin?a
v (e* —e M cosale* 0 + e=®1=D]sina(l — X) — (e* + e~ sina [e*1™0 — =21 cosa(1 — X) (A1)
J4o (e* — e~*)2cos?a + (e® + e~%)?%sin’a '
where

_|o_ [o3485 _ .
a= 5 = >— =0

(e® —e ) cosa = (2174 — ¢704174) c05 0.4174 = 0.7854820

Substituting the value of a gives

(e?+ e %) sina = (e%417% + ¢794174) 5in 0.4174 = 0.8824288

(e® — e %)2%cos?a + (e* + e~ %)?sin’a = 0.78548207% + 0.88242882 = 1.3956626

(e*—e Ycosa 07854820 0.5628022
(e® —e=%)2cos2a + (e% + e~%)2sin2a  1.3956626
(e*+e Y sina 0.8824288
= 0.6322651

(e? —e=%)2cos?a + (e® + e~%)?sin?%a ~ 1.3956626

17
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Substituting into (A.1) gives
U(X) = A0{0.5628022[e41~%) — ¢=¢(1=%)] cosa(1 — X) + 0.6322651[e41~X) 4 ¢=¢(1-X]sina(1 — X)}
+jA0{0.5628022[e41~X) + ¢=a(1=]sina(1 — X) — 0.6322651[e1~%) — e=3(1=%)] cos a(1 — X)}
where Ao = 50°C and a = 0.4174.

In Table 1, column 1 shows X from 0 to 1 in intervals of 0.02. Columns 2 and 3 show the real and imaginary parts of U(X), column 4 shows the amplitude
A(X) of 6(X, T):

A = V{Re[UCON? + {Im[U (D]}
and column 5 shows the phase ¢(X) of (X, T):

¢(X) = arctan {Im[U(X)]}

Re[U(X)]
Columns 6 to 9 show (X, T) = A(X) cos[QT + ¢(X)] against X for QT values of 0, m/2 , m, and 3w/2. The last four columns are plotted in Figure 3. The

diffusivity of the steel is so high that there is little thermal lag in the response of the temperature profiles to the sinusoidal temperature oscillations applied to
the outer surface, X = 0, of the plate.

18



ATKINSON SCIENCE LIMITED THEORY GUIDE

Table 1 6(X,T) vs. X and QT for oscillations on the outer surface of the steel plate

X[ Re[UCO] [ Im[UCO] | AR $(X) $(X) 6(X,T)

[Rad] [Deg] NT =0 /2 T 3m/2
0 50.0000 0.0000 50.0000 0.0000 0.0000 50.0000 0.0000 | —50.0000 | 0.0000
0.02 48.9973 | —0.1126 | 48.9974 | —0.0023 | —0.1317 | 48.9973 0.1126 | —48.9973 | —0.1126
0.04 479946 | —0.2184 | 47.9951 | —0.0045 | —0.2607 | 47.9946 0.2184 | —47.9946 | —0.2184
0.06 46.9920 | —0.3174 | 46.9931 | —0.0068 | —0.3870 | 46.9920 03174 | —46.9920 | —0.3174
0.08 459894 | —0.4100 | 45.9912 | —0.0089 | —0.5108 | 45.9894 0.4100 | —45.9894 | —0.4100
0.10 449868 | —0.4961 | 44.9896 | —0.0110 | —0.6318 | 44.9868 0.4961 | —44.9868 | —0.4961
0.12 439844 | —0.5759 | 43.9881 | —0.0131 | —0.7502 | 43.9844 0.5759 | —43.9844 | —0.5759
0.14 42,9820 | —0.6497 | 42.9869 | —0.0151 | —0.8659 | 42.9820 0.6497 | —42.9820 | —0.6497
0.16 419797 | —0.7174 | 41.9858 | —0.0171 | —0.9790 | 41.9797 0.7174 | —41.9797 | —0.7174
0.18 40.9775 | —0.7793 | 40.9849 | —0.0190 | —1.0895 | 40.9775 0.7793 —40.9775 | —0.7793
0.20 39.9754 | —0.8354 | 39.9841 | —0.0209 | —1.1972 | 39.9754 0.8354 | —39.9754 | —0.8354
0.22 389734 | —0.8860 | 38.9834 | —0.0227 | —1.3024 | 38.9734 0.8860 | —38.9734 | —0.8860
0.24 379715 | —0.9312 | 37.9829 | —0.0245 | —1.4048 | 37.9715 0.9312 —37.9715 | —0.9312
0.26 369698 | —0.9711 | 36.9825 | —0.0263 | —1.5046 | 36.9698 0.9711 —36.9698 | —0.9711
0.28 359682 | —1.0058 | 35.9823 | —0.0280 | —1.6017 | 35.9682 1.0058 | —35.9682 | —1.0058
0.30 349667 | —1.0355 | 34.9821 | —0.0296 | —1.6962 | 34.9667 1.0355 | —34.9667 | —1.0355
0.32 33.9654 | —1.0603 | 33.9820 | —0.0312 | —1.7880 | 33.9654 1.0603 —33.9654 | —1.0603
0.34 329643 | —1.0804 | 32.9820 | —0.0328 | —1.8772 | 32.9643 1.0804 | —32.9643 | —1.0804
0.36 319633 | —1.0959 | 31.9821 | —0.0343 | —1.9637 | 31.9633 1.0959 | —31.9633 | —1.0959
0.38 309624 | —1.1070 | 30.9822 | —0.0357 | —2.0475 | 30.9624 1.1070 | —30.9624 | —1.1070
0.40 299617 | —1.1137 | 29.9824 | —0.0372 | —2.1287 | 29.9617 1.1137 | —29.9617 | —1.1137
0.42 289612 | —1.1162 | 28.9827 | —0.0385 | —2.2072 | 28.9612 1.1162 —28.9612 | —1.1162
0.44 279608 | —1.1148 | 27.9830 | —0.0398 | —2.2831 | 27.9608 1.1148 | —27.9608 | —1.1148
0.46 269605 | —1.1094 | 26.9833 | —0.0411 | —2.3563 | 26.9605 1.1094 | —26.9605 | —1.1094
0.48 259605 | —1.1002 | 25.9838 | —0.0424 | —2.4268 | 25.9605 1.1002 —25.9605 | —1.1002
0.50 249605 | —1.0875 | 24.9842 | —0.0435 | —2.4947 | 24.9605 1.0875 | —24.9605 | —1.0875
0.52 239607 | —1.0713 | 23.9847 | —0.0447 | —2.5599 | 23.9607 1.0713 —23.9607 | —1.0713
0.54 229611 | —1.0517 | 229852 | —0.0458 | —2.6225 | 22.9611 1.0517 | —22.9611 | —1.0517
0.56 219616 | —1.0289 | 21.9857 | —0.0468 | —2.6824 | 21.9616 1.0289 | —21.9616 | —1.0289
0.58 209623 | —1.0031 | 20.9863 | —0.0478 | —2.7396 | 20.9623 1.0031 | —20.9623 | —1.0031
0.60 19.9631 | —0.9743 | 19.9869 | —0.0488 | —2.7942 | 19.9631 0.9743 —19.9631 | —0.9743
0.62 18.9640 | —0.9428 | 189875 | —0.0497 | —2.8461 | 18.9640 0.9428 | —18.9640 | —0.9428
0.64 17.9651 | —0.9086 | 17.9881 | —0.0505 | —2.8953 | 17.9651 0.9086 | —17.9651 | —0.9086
0.66 16.9663 | —0.8719 | 16.9887 | —0.0513 | —2.9419 | 16.9663 0.8719 | —16.9663 | —0.8719
0.68 159676 | —0.8329 | 159893 | —0.0521 | —2.9858 | 15.9676 0.8329 | —15.9676 | —0.8329
0.70 14.9691 | —0.7916 | 14.9900 | —0.0528 | —3.0271 | 14.9691 0.7916 | —14.9691 | —0.7916
0.72 13.9706 | —0.7482 | 13.9906 | —0.0535 | —3.0657 | 13.9706 0.7482 —13.9706 | —0.7482
0.74 129722 | —0.7029 | 129913 | —0.0541 | —3.1016 | 12.9722 0.7029 | —12.9722 | —0.7029
0.76 11.9740 | —0.6558 | 11.9919 | —0.0547 | —3.1349 | 11.9740 0.6558 | —11.9740 | —0.6558
0.78 10.9758 | —0.6070 | 10.9926 | —0.0552 | —3.1655 | 10.9758 0.6070 | —10.9758 | —0.6070

0.80 9.9778 —0.5567 9.9933 —0.0557 | —3.1935 9.9778 0.5567 —9.9778 | —0.5567
0.82 8.9798 —0.5050 8.9939 —0.0562 | —3.2187 8.9798 0.5050 —8.9798 | —0.5050
0.84 7.9818 —0.4520 7.9946 —0.0566 | —3.2414 7.9818 0.4520 —7.9818 | —0.4520
0.86 6.9840 —0.3980 6.9953 —0.0569 | —3.2613 6.9840 0.3980 —6.9840 | —0.3980
0.88 5.9861 —0.3429 5.9960 —0.0572 | —3.2786 5.9861 0.3429 —5.9861 —0.3429
0.90 4.9884 —0.2870 4.9966 —0.0575 | —3.2933 4.9884 0.2870 —4.9884 | —0.2870
0.92 3.9907 —0.2305 3.9973 —0.0577 | —3.3053 3.9907 0.2305 —3.9907 | —0.2305
0.94 2.9930 —0.1733 2.9980 —0.0579 | —3.3146 2.9930 0.1733 —2.9930 | —0.1733
0.96 1.9953 —0.1158 1.9987 —0.0580 | —3.3212 1.9953 0.1158 —1.9953 —0.1158
0.98 0.9976 —0.0580 0.9993 —0.0580 | —3.3252 0.9976 0.0580 —0.9976 | —0.0580

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 3 O(X,T) vs. X and QT for oscillations on the outer surface of the steel plate

50 |
—0
40
—Pi/2
30 —Pi
—3Pi/2
20
10
@ 0 R
-10
-20
-30
-40
-50
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

20



ATKINSON SCIENCE LIMITED THEORY GUIDE

(b) The thermal diffusivity a of the timber board is

k 0.12

= —=—— " =(.1488x 105 m?%s~!
%= 5C T 480 x 1680 mes

so the angular frequency term {2 is

0= 2m % 0.022 — 28.15 rad
T 600x0.1488 x 106 <o

From the Appendix

U = A (e* —e ) cosale® ) — e=@(1=D] cosa(l — X) + (e® + e ) sina [e*1X) + =21 D] sina(1 — X)

- (e* —e~%)2cos?a + (e* + e~2)?sin?a
v (e* —e M cosale* ™0 + e=®1=D]sina(l — X) — (e* + e~ sina [e*1™ — =21 cosa(1 — X) (A1)

J4o (e* — e~*)2cos?a + (e® + e~%)?%sin’a '

where
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Substituting the value of a gives

(e -

Substituting into (A.1) gives

(e —e % cosa = (37°? — e73752) c0s3.752 = —34.892903

(e? + e %) sina = (e3752 + e73752) s5in 3.752 = —24.435409

e~ %)2%cos?a + (e* + e~ %)?sin’a = (—34.892903)? + (—24.435409)? = 1814.6039

(e*—e Ycosa _ —34.892903 0.019228936
(e® —e~®)2cos2a + (e® + e~*)2sin2a  1814.6039
(e + e Ysina —24.435409
= = —0.013465974

(e* —e~*)2cos?a + (e + e~%)?%sin?a  1814.6039

THEORY GUIDE

U(X) = Ap{(—0.019228936)[e*1~%) — ¢=a(1=")] cosa(1 — X) + (—0.013465974)[e*(1~%) + e=¢(1=¥] sina(1 — X)}

+jA0{(—0.019228936)[e*1~%) + e=4(1=)]sina(1 — X) — (—0.013465974)[e*1~%) — ¢=3(1=%)] cosa(1 — X)}

where 49 = 50°C and a = 3.752.
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In Table 2, column 1 shows X from 0 to 1 in intervals of 0.02. Columns 2 and 3 show the real and imaginary parts of U(X), column 4 shows the amplitude
A(X) of 6(X, T):

AX) = {Re[UCOT}? + {Im[UX)]}?

and column 5 shows the phase ¢(X) of 8(X, T):

Im[U(X)]}

¢(X) = arctan {Re[U(X)]

Columns 6 to 9 show (X, T) = A(X) cos[2T + ¢(X)] against X for 2T values of 0, /2 , m, and 37/2. The last four columns are plotted in Figure 4. The
diffusivity of the timber is two orders of magnitude smaller than that of steel and consequently there is a much greater time lag in the response of the temperature
profiles to the sinusoidal temperature oscillations.
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Table 2 6(X, T) vs. X and QT for oscillations on the outer surface of the timber board

X [ Re[UCO] [ Im[UX)] | AR $(X) 09 6(X,T)
[Rad] [Deg] NT =0 /2 T 3m/2
0 50.0000 0.0000 50.0000 0.0000 0.0000 50.0000 0.0000 | —50.0000 0.0000

0.02 46.2495 —3.4751 | 46.3798 | —0.0750 —4.2970 46.2495 3.4751 —46.2495 | —3.4751
0.04 42.5376 | —6.4292 | 43.0207 | —0.1500 —8.5947 42.5376 6.4292 —42.5376 | —6.4292
0.06 38.8977 | —8.9042 39.9038 | —0.2250 | —12.8936 | 38.8977 8.9042 —38.8977 | —8.9042
0.08 35.3576 | —10.9410 | 37.0117 | —0.3001 | —17.1941 | 35.3576 | 10.9410 | —35.3576 | —10.9410
0.10 31.9404 | —12.5796 | 34.3283 | —0.3752 | —21.4967 | 31.9404 | 12.5796 | —31.9404 | —12.5796
0.12 28.6645 | —13.8582 | 31.8388 | —0.4503 | —25.8021 28.6645 | 13.8582 | —28.6645 | —13.8582
0.14 25.5444 | —14.8140 | 29.5292 | —0.5255 | —30.1107 | 25.5444 | 14.8140 | —25.5444 | —14.8140
0.16 22.5909 | —15.4818 | 27.3868 | —0.6008 | —34.4234 | 22.5909 | 15.4818 | —22.5909 | —15.4818
0.18 19.8115 | —15.8951 | 25.3998 | —0.6762 | —38.7408 19.8115 | 15.8951 | —19.8115 | —15.8951
0.20 17.2108 | —16.0852 | 23.5573 | —0.7516 | —43.0637 17.2108 | 16.0852 | —17.2108 | —16.0852
0.22 14.7912 | —16.0812 | 21.8491 | —0.8272 | —47.3927 14.7912 16.0812 | —14.7912 | —16.0812
0.24 12.5525 | —15.9104 | 20.2659 | —0.9028 | —51.7285 12.5525 | 159104 | —12.5525 | —15.9104
0.26 10.4928 | —15.5982 | 18.7990 | —0.9786 | —56.0714 | 10.4928 | 15.5982 | —10.4928 | —15.5982
0.28 8.6087 —15.1676 | 17.4403 | —1.0546 | —60.4218 8.6087 15.1676 | —8.6087 | —15.1676
0.30 6.8954 | —14.6398 | 16.1824 | —1.1306 | —64.7796 6.8954 14.6398 | —6.8954 | —14.6398
0.32 5.3468 —14.0343 | 15.0183 | —1.2068 | —69.1442 5.3468 14.0343 —5.3468 | —14.0343
0.34 3.9562 —13.3684 | 13.9415 | —1.2831 | —73.5146 3.9562 13.3684 | —3.9562 | —13.3684
0.36 2.7162 —12.6578 | 12.9460 | —1.3594 | —77.8890 2.7162 12.6578 | —2.7162 | —12.6578
0.38 1.6186 —11.9165 | 12.0260 | —1.4358 | —82.2649 1.6186 11.9165 —1.6186 | —11.9165
0.40 0.6553 —11.1569 | 11.1761 | —1.5121 | —86.6388 0.6553 11.1569 —0.6553 | —11.1569
0.42 —0.1824 | —10.3897 | 10.3913 | —1.5884 | —91.0060 | —0.1824 | 10.3897 0.1824 —10.3897

0.44 —0.9031 —9.6245 9.6668 —1.6644 | —95.3608 | —0.9031 9.6245 0.9031 —9.6245
0.46 —1.5154 | —8.8694 8.9979 —1.7400 | —99.6960 | —1.5154 8.8694 1.5154 —8.8694
0.48 —2.0278 | —8.1312 8.3802 —1.8152 | —104.0033 | —2.0278 8.1312 2.0278 —8.1312
0.50 —2.4486 | —7.4158 7.8096 —1.8897 | —108.2728 | —2.4486 7.4158 2.4486 —7.4158
0.52 —2.7859 —6.7278 7.2818 —1.9634 | —112.4936 | —2.7859 6.7278 2.7859 —6.7278
0.54 —3.0473 —6.0712 6.7931 —2.0360 | —116.6535 | —3.0473 6.0712 3.0473 —6.0712
0.56 —3.2404 | —5.4488 6.3396 —2.1073 | —120.7396 | —3.2404 5.4488 3.2404 —5.4488
0.58 —3.3720 | —4.8629 5.9177 —2.1771 | —124.7382 | —3.3720 4.8629 3.3720 —4.8629
0.60 —3.4489 —4.3149 5.5239 —2.2451 | —128.6352 | —3.4489 4.3149 3.4489 —4.3149
0.62 —3.4771 —3.8057 5.1550 —2.3111 | —132.4166 | —3.4771 3.8057 3.4771 —3.8057
0.64 —3.4624 | —3.3356 4.8078 —2.3748 | —136.0688 | —3.4624 3.3356 3.4624 —3.3356
0.66 —3.4102 —2.9045 4.4794 —2.4361 | —139.5784 | —3.4102 2.9045 3.4102 —2.9045
0.68 —3.3251 —2.5117 4.1672 —2.4947 | —142.9335 | —3.3251 2.5117 3.3251 —2.5117
0.70 —3.2118 | —2.1564 3.8685 —2.5503 | —146.1226 | —3.2118 2.1564 3.2118 —2.1564
0.72 —3.0741 —1.8372 3.5813 —2.6029 | —149.1360 | —3.0741 1.8372 3.0741 —1.8372
0.74 —2.9157 | —1.5526 3.3033 —2.6523 | —151.9648 | —2.9157 1.5526 2.9157 —1.5526
0.76 —2.7398 | —1.3008 3.0330 —2.6983 | —154.6019 | —2.7398 1.3008 2.7398 —1.3008
0.78 —2.5492 —1.0799 2.7685 —2.7409 | —157.0412 | —2.5492 1.0799 2.5492 —1.0799
0.80 —2.3465 —0.8877 2.5088 —2.7799 | —159.2777 | —2.3465 0.8877 2.3465 —0.8877
0.82 —2.1337 | —0.7219 2.2525 —2.8153 | —161.3076 | —2.1337 0.7219 2.1337 —0.7219
0.84 —1.9127 | —0.5801 1.9987 —2.8471 | —163.1282 | —1.9127 0.5801 1.9127 —0.5801
0.86 —1.6852 —0.4598 1.7468 —2.8752 | —164.7372 | —1.6852 0.4598 1.6852 —0.4598
0.88 —1.4525 —0.3586 1.4961 —2.8996 | —166.1332 | —1.4525 0.3586 1.4525 —0.3586
0.90 —1.2158 | —0.2736 1.2462 —2.9202 | —167.3153 | —1.2158 0.2736 1.2158 —0.2736
0.92 —0.9759 —0.2024 0.9967 —2.9371 | —168.2829 | —0.9759 0.2024 0.9759 —0.2024
0.94 —0.7338 | —0.1422 0.7474 —2.9502 | —169.0356 | —0.7338 0.1422 0.7338 —0.1422
0.96 —0.4900 | —0.0902 0.4983 —2.9596 | —169.5733 | —0.4900 0.0902 0.4900 —0.0902
0.98 —0.2453 —0.0437 0.2491 —2.9652 | —169.8959 | —0.2453 0.0437 0.2453 —0.0437

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24



ATKINSON SCIENCE LIMITED THEORY GUIDE

Figure 4 6(X,T) vs. X and 0T for oscillations on the outer surface of the timber board
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6 Example 2

Temperature oscillations are now applied to both sides of the timber board in Example 1. On the outer
surface, x = 0, the temperature oscillations are the same as those in Example 1. On the inner surface,
x = L, the temperature oscillates about 0°C with a period of 10 minutes as before, but the amplitude is
25°C and the oscillations lag those on the outer surface by /2 rad. The board is initially at 0°C.
Calculate the temperature in the board once sufficient time has elapsed for the temperature to become
periodic.

To solve this problem, we can make use of the principle of superstition set out in Section 3.3. In
Example 1, we solved the dimensionless boundary—value problem

00 _ 0%0 0<X<1T>0
oT  0X? ’

6(0,T) =AgcosQT t=0
0(L,T)=0 T3>0
6(X,00=0 0<X<1

The values of L and a used to scale the independent variables x, t and w do not change when temperature
oscillations are applied to the inner surface of the board and the solution of the temperature is linear in
Aop. Consequently, the temperature solution due to the oscillations on the inner surface of the board is
identical to the solution of Example 1, except that the temperature must be scaled by 25/50 and shifted
backwards in time by 2T = /2. We simply need to modify Table 2 so that X in column 1 runs from 1
to 0, the temperature in columns 7 to 10 is halved, the temperature in the column labelled 2T = 0 is
moved to 2T = /2, the temperature in the column labelled 2T = /2 is moved to 2T = m, and so on.
These operations have been carried out to produce the temperature solution in Table 3. Temperature
profiles at intervals of 7t /2 are plotted in Figure 5.

To obtain the solution when temperature oscillations are applied to both sides of the board, we simply

need to add together the solutions in Tables 2 and 3. The solution is given in Table 4 and plotted in
Figure 6.
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Table 3 6(X,T) vs. X and QT for oscillations on the inner surface of the timber board

X [ Re[UCO] [ Im[UX)] | AR $(X) 09 6(X,T)
[Rad] [Deg] NT =0 /2 T 3m/2

1 25.0000 0.0000 25.0000 0.0000 0.0000 0.0000 25.0000 0.0000 —25.0000
0.98 23.1247 | —1.7375 | 23.1899 | —0.0750 —4.2970 —1.7375 | 23.1247 1.7375 —23.1247
0.96 21.2688 | —3.2146 | 21.5104 | —0.1500 —8.5947 —3.2146 | 21.2688 3.2146 —21.2688
0.94 19.4488 | —4.4521 19.9519 | —0.2250 | —12.8936 | —4.4521 | 19.4488 4.4521 —19.4488
0.92 17.6788 | —5.4705 18.5059 | —0.3001 | —17.1941 | —5.4705 | 17.6788 5.4705 —17.6788
0.9 15.9702 —6.2898 17.1642 | —0.3752 | —21.4967 | —6.2898 | 15.9702 6.2898 —15.9702
0.88 14.3323 —6.9291 159194 | —0.4503 | —25.8021 | —6.9291 | 14.3323 6.9291 —14.3323
0.86 12.7722 —7.4070 14.7646 | —0.5255 | —30.1107 | —7.4070 | 12.7722 7.4070 —12.7722
0.84 11.2954 | —7.7409 13.6934 | —0.6008 | —34.4234 | —7.7409 | 11.2954 7.7409 —11.2954
0.82 9.9057 —7.9476 12.6999 | —0.6762 | —38.7408 | —7.9476 9.9057 7.9476 —9.9057
0.8 8.6054 —8.0426 11.7786 | —0.7516 | —43.0637 | —8.0426 8.6054 8.0426 —8.6054
0.78 7.3956 —8.0406 10.9245 | —0.8272 | —47.3927 | —8.0406 7.3956 8.0406 —7.3956
0.76 6.2762 —7.9552 10.1329 | —0.9028 | —51.7285 | —7.9552 6.2762 7.9552 —6.2762
0.74 5.2464 —7.7991 9.3995 —0.9786 | —56.0714 | —7.7991 5.2464 7.7991 —5.2464
0.72 4.3044 —7.5838 8.7202 —1.0546 | —60.4218 | —7.5838 4.3044 7.5838 —4.3044
0.7 3.4477 —7.3199 8.0912 —1.1306 | —64.7796 | —7.3199 3.4477 7.3199 —3.4477
0.68 2.6734 —7.0172 7.5092 —1.2068 | —69.1442 | —7.0172 2.6734 7.0172 —2.6734
0.66 1.9781 —6.6842 6.9708 —1.2831 | —73.5146 | —6.6842 1.9781 6.6842 —1.9781
0.64 1.3581 —6.3289 6.4730 —1.3594 | —77.8890 | —6.3289 1.3581 6.3289 —1.3581
0.62 0.8093 —5.9583 6.0130 —1.4358 | —82.2649 | —5.9583 0.8093 5.9583 —0.8093
0.6 0.3276 —5.5784 5.5881 —1.5121 | —86.6388 | —5.5784 0.3276 5.5784 —0.3276

0.58 —0.0912 —5.1949 5.1957 —1.5884 | —91.0060 | —5.1949 | —0.0912 5.1949 0.0912
0.56 —0.4516 | —4.8122 4.8334 —1.6644 | —95.3608 | —4.8122 | —0.4516 4.8122 0.4516

0.54 —0.7577 | —4.4347 4.4989 —1.7400 | —99.6960 | —4.4347 | —0.7577 4.4347 0.7577
0.52 —1.0139 —4.0656 4.1901 —1.8152 | —104.0033 | —4.0656 | —1.0139 4.0656 1.0139
0.5 —1.2243 —3.7079 3.9048 —1.8897 | —108.2728 | —3.7079 | —1.2243 3.7079 1.2243

0.48 —1.3929 —3.3639 3.6409 —1.9634 | —112.4936 | —3.3639 | —1.3929 3.3639 1.3929
0.46 —1.5237 | —3.0356 3.3965 —2.0360 | —116.6535 | —3.0356 | —1.5237 3.0356 1.5237

0.44 —1.6202 —2.7244 3.1698 —2.1073 | —120.7396 | —2.7244 | —1.6202 2.7244 1.6202
0.42 —1.6860 | —2.4315 2.9588 —2.1771 | —124.7382 | —2.4315 | —1.6860 2.4315 1.6860
0.4 —1.7244 | —-2.1575 2.7619 —2.2451 | —128.6352 | —2.1575 | —1.7244 2.1575 1.7244

0.38 —1.7386 | —1.9029 2.5775 —2.3111 | —132.4166 | —1.9029 | —1.7386 1.9029 1.7386
0.36 —1.7312 —1.6678 2.4039 —2.3748 | —136.0688 | —1.6678 | —1.7312 1.6678 1.7312
0.34 —1.7051 —1.4522 2.2397 —2.4361 | —139.5784 | —1.4522 | —1.7051 1.4522 1.7051

0.32 —1.6626 | —1.2559 2.0836 —2.4947 | —142.9335 | —1.2559 | —1.6626 1.2559 1.6626
0.3 —1.6059 —1.0782 1.9343 —2.5503 | —146.1226 | —1.0782 | —1.6059 1.0782 1.6059
0.28 —1.5371 —0.9186 1.7906 —2.6029 | —149.1360 | —0.9186 | —1.5371 0.9186 1.5371

0.26 —1.4579 —0.7763 1.6517 —2.6523 | —151.9648 | —0.7763 | —1.4579 0.7763 1.4579
0.24 —1.3699 —0.6504 1.5165 —2.6983 | —154.6019 | —0.6504 | —1.3699 0.6504 1.3699
0.22 —1.2746 | —0.5400 1.3843 —2.7409 | —157.0412 | —0.5400 | —1.2746 0.5400 1.2746

0.2 —1.1732 —0.4438 1.2544 —2.7799 | —159.2777 | —0.4438 | —1.1732 0.4438 1.1732
0.18 —1.0668 | —0.3609 1.1262 —2.8153 | —161.3076 | —0.3609 | —1.0668 0.3609 1.0668
0.16 —0.9564 | —0.2900 0.9994 —2.8471 | —163.1282 | —0.2900 | —0.9564 0.2900 0.9564

0.14 —0.8426 | —0.2299 0.8734 —2.8752 | —164.7372 | —0.2299 | —0.8426 0.2299 0.8426
0.12 —0.7263 —0.1793 0.7481 —2.8996 | —166.1332 | —0.1793 | —0.7263 0.1793 0.7263

0.1 —0.6079 —0.1368 0.6231 —2.9202 | —167.3153 | —0.1368 | —0.6079 0.1368 0.6079
0.08 —0.4880 | —0.1012 0.4983 —2.9371 | —168.2829 | —0.1012 | —0.4880 0.1012 0.4880
0.06 —0.3669 —0.0711 0.3737 —2.9502 | —169.0356 | —0.0711 | —0.3669 0.0711 0.3669
0.04 —0.2450 | —0.0451 0.2491 —2.9596 | —169.5733 | —0.0451 | —0.2450 0.0451 0.2450
0.02 —0.1226 | —0.0219 0.1246 —2.9652 | —169.8959 | —0.0219 | —0.1226 0.0219 0.1226

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 5 O(X,T) vs. X and 0T for oscillations on the inner surface of the timber board
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Table 4 6(X,T) vs. X and QT for oscillations on both sides of the timber board

X o, 1T
NT=0 /2 b4 3n/2
0 50.0000 0.0000 —50.0000 0.0000
0.02 46.2276 3.3524 —46.2276 | —3.3524
0.04 42.4925 6.1842 —42.4925 | —6.1842
0.06 38.8266 8.5373 —38.8266 | —8.5373
0.08 35.2564 10.4531 | —35.2564 | —10.4531
0.10 31.8036 11.9717 | —=31.8036 | —11.9717
0.12 28.4853 13.1320 | —28.4853 | —13.1320
0.14 25.3145 13.9714 | —25.3145 | —13.9714
0.16 22.3008 14.5255 | —22.3008 | —14.5255
0.18 19.4505 14.8283 | —19.4505 | —14.8283
0.20 16.7670 149119 | —-16.7670 | —14.9119
0.22 14.2512 14.8066 | —14.2512 | —14.8066
0.24 11.9021 14.5405 | —11.9021 | —14.5405
0.26 9.7165 14.1403 —9.7165 | —14.1403
0.28 7.6901 13.6305 —7.6901 | —13.6305
0.30 5.8172 13.0340 —5.8172 | —13.0340
0.32 4.0909 12.3718 —4.0909 | —12.3718
0.34 2.5040 11.6634 —2.5040 | —11.6634
0.36 1.0483 10.9266 —1.0483 | —10.9266
0.38 —0.2842 10.1780 0.2842 —10.1780
0.40 —1.5022 9.4324 1.5022 —9.4324
0.42 —2.6139 8.7037 2.6139 —8.7037
0.44 —3.6276 8.0043 3.6276 —8.0043
0.46 —4.5510 7.3457 4.5510 —7.3457
0.48 —5.3917 6.7382 5.3917 —6.7382
0.50 —6.1565 6.1914 6.1565 —6.1914
0.52 —6.8515 5.7139 6.8515 —5.7139
0.54 —7.4820 5.3135 7.4820 —5.3135
0.56 —8.0526 4.9973 8.0526 —4.9973
0.58 —8.5669 4.7717 8.5669 —4.7717
0.60 —9.0273 4.6425 9.0273 —4.6425
0.62 —9.4354 4.6150 9.4354 —4.6150
0.64 —9.7914 4.6937 9.7914 —4.6937
0.66 | —10.0944 | 4.8826 10.0944 —4.8826
0.68 | —10.3423 5.1851 10.3423 —5.1851
0.70 | —=10.5317 5.6041 10.5317 —5.6041
0.72 —10.6579 6.1416 10.6579 —6.1416
0.74 | —10.7148 6.7990 10.7148 —6.7990
0.76 | —10.6950 7.5771 10.6950 —7.5771
0.78 | —10.5898 8.4755 10.5898 —8.4755
0.80 | —10.3890 9.4931 10.3890 —9.4931
0.82 —10.0812 | 10.6276 10.0812 | —10.6276
0.84 —9.6536 11.8755 9.6536 —11.8755
0.86 —9.0922 13.2321 9.0922 —13.2321
0.88 —8.3816 14.6908 8.3816 —14.6908
0.90 —7.5055 16.2438 7.5055 —16.2438
0.92 —6.4464 17.8812 6.4464 —17.8812
0.94 —5.1859 19.5910 5.1859 —19.5910
0.96 —3.7046 21.3590 3.7046 —21.3590
0.98 —1.9828 23.1684 1.9828 —23.1684
1.00 0.0000 25.0000 0.0000 —25.0000
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Figure 6 O(X, T) vs. X and QT for oscillations on both sides of the timber board
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7 Example 3

This example is the same as Example 2, except that the temperature on the outer surface of the board
oscillates about 40°C and the temperature on the inner surface oscillates about 10°C.

To calculate the temperature in the board, we can use the principle of superposition again. We need to
solve two more boundary-value problems:

6_9=62_9 0<X<1,T>0

aT ~ dx? ’
6(0,T)=40 T=0
6(1,T)=0 T=>0

6(X,00=0 0<X<1

and

6—9 = 02—9 0<X<1,T>0
oT 0X? '
6(0,T)=0 T=0
6(1,T)=10 T=0
6(X,00=0 0<X<1
The dimensionless temperature 6 in the slab is initially zero everywhere. In both problems, the

temperatures on both sides of the board are fixed, so after a period of time has elapsed the temperature
profile across the board will become steady. The two problems reduce to

dz—9=0 0<X<1
dx?
6=40 X=0
6=0 X=1
and
dz—9=0 0<X<1
dx?
6=0 X=0
6=10 X=1

The solution to the first problem is simply a straight line between X = 0,0 =40 and X =1,6 =0 and
the solution to the second problem is simply a straight line between X = 0,0 =0and X =1, 6 =10,
as shown in Figure 7.
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To obtain the temperature solution in this example we add together the two straight lines in Figure 7.
The resulting straight line is the time-averaged temperature in the example. Then we add this straight
line to each of the profiles in Figure 6. This has been done in Figure 8.

Figure 7 Solutions to the third and fourth boundary-value problems
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Figure 8 O6(X, T) vs. X and QT with straight-line mean value
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9 Appendix

In this Appendix we show how the complex function U(X) given by (5.2) can be split into a real part and an imaginary part. Recall (5.2):

exp [Jg(l + )1 —X)] —exp [—\/g(l + )1 —X)]
exp [\/g(l +j)] —exp [—\/g(l +j)]

UX) = 4,

Leta = ./0/2, then

expla(l +)(1 - X)] —exp[—a(1 + )1 - X)]
expla(l + j)] — exp[—a(1 + )]

UX) = 4,

ea(l—X)eja(l—X) _ e—a(l—X)e—ja(l—x)
= AO

eaeja _ e—ae—ja

e®1=N[cosa(l — X) + jsina(l — X)] — e~ *AN[cosa(l — X) — jsina(l — X)]

=A
0 e?(cosa + jsina) —e~%(cosa —jsina)

[e¢1=%) — e=all=M)] cosa(1 — X) + j[e*10) 4+ =21 sina(1 — X)
(e —e %) cosa+j(e*+ e %)sina

= 4,
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Multiplying top and bottom by (e? — e~ %) cosa —j (e + e *)sina:

SO

When X =0,

(e®— e ) cosa e =% — e=¢(1-D] cosa(l — X) + j(e® — e~*) cos a [e41X) + ¢=4(=D]sina(1 - X)

UX)=A4
&) 0 (e* —e~%)2cos?a + (e* + e~2)?sin?a

—j(e®+ e %) sina [e41X) — ¢=a(1=¥] cosa(l — X) + (e% + e~*) sina [e41X) 4+ ¢=a(1=D]sina(1 — X)

+A
0 (e* — e~*)2cos?a + (e® + e~%)?%sin’a

(e* —e ¥ cosale* ™ — e=@1="D]cosa(l — X) + (e® + e ) sina [e*1X) + =21 D] sina(1 — X)

UXxX)=4
) 0 (e* —e~%)2cos?a + (e? + e~2)?sin?a

(e* —e M cosale* ™0 + e=®1=D]sina(l — X) — (e* + e~ sina [e*1™0 — =21 cosa(1 — X)

(e* — e~*)2cos?a + (e® + e~%)?%sin’a

+jA, (A1)

e ?%cos?a + (e* + e~ %)?sin’a
e~%)2cos?a + (e* + e~%)?sin’a

(e —
UX) = 4, =

(e*—e ™M (e?*+e % cosasina— (e?* + e ?)(e* —e %) sinacosa

+jA
/4o (e* — e=%)2cos?a + (e® + e~%)2sin?a
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The magnitude A(X) of U(X) at X =0 is

AX) = U] = V{Re[UGOI? + (Im[U(XN)]}? = /A(% +02 =4,

and the phase ¢(X) of U(X) at X =0 is

¢(X) = arctan {%} = arctan {AE} =0

SO
O(X,T) = A(X) cos[QT + ¢(X)]
= Ay cos 0T

as expected.

When X =1,
U(X) =4 (e*—e %) cosale —e ] cosad + (e* + e %) sina[e?® + e %°] sinal
e (e* —e~%)2cos?a + (e* + e~2)2sin?a
i (e*—e Y cosale® + e )] sinald — (e* + e %) sina[e?® — e~ %] cos a0
J4o (e2 — e~%)2cos?a + (e? + e~%)?sin%a
= 0+0
SO
6(X,T)=0

as expected.

41

THEORY GUIDE



ATKINSON SCIENCE LIMITED THEORY GUIDE

42



	1 Introduction
	2 Differential equation of one−dimensional heat conduction
	3 Properties of the differential equation
	3.1 Definition of a linear partial differential equation
	3.2 Boundary−value problems
	3.3 Superposition principle

	4 Dimensionless form
	5 Example 1
	6 Example 2
	7 Example 3
	8 References
	9 Appendix

