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1 Convection and radiation at the faces of a wall 
 
In the preceding report in this series, Ref. [1], we determined the heat fluxes at the inside and outside 
surfaces of a composite wall when a sinusoidal temperature variation is applied to one surface and the 
temperature on the other surface is held constant. For applications to buildings, we must also consider 
the convective and radiant heat exchange at the surfaces. 
 
The convection heat transfer coefficient on the outside surface of the wall, 𝑥𝑥 = 0, is denoted by h𝑜𝑜 and 
the coefficient on the inside surface, 𝑥𝑥 = 𝐿𝐿, is denoted by h𝑖𝑖, as shown in Figure 1. The time-varying air 
temperatures on the two sides are denoted by 𝜃𝜃𝑎𝑎𝑜𝑜(𝑡𝑡) and 𝜃𝜃𝑎𝑎𝑖𝑖(𝑡𝑡) and the time-varying net radiant heat 
gains on the two sides are denoted by 𝑞𝑞𝑟𝑟𝑜𝑜(𝑡𝑡) and 𝑞𝑞𝑟𝑟𝑖𝑖(𝑡𝑡). 
 
 
Figure 1  Slab with boundary layers 

 
 

1.1 Outside surface 
 
The time-varying heat flux 𝑞𝑞(0, 𝑡𝑡) [W m−2] into the outside surface is 
 

𝑞𝑞(0, 𝑡𝑡) = ℎ𝑜𝑜[𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝜃𝜃(0, 𝑡𝑡)] + 𝑞𝑞𝑟𝑟𝑟𝑟(𝑡𝑡)      (1.1) 
 
We can regard the boundary layer on the surface as a slab. Since the slab has negligible thermal capacity, 
the heat flux into the slab must be the same as the heat flux leaving the slab, so 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = 𝑞𝑞(0, 𝑡𝑡)      (1.2) 
 
Rearranging (1.1) so that the wall surface temperature is on the left-hand side gives 
 

𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡) +
1

ℎ𝑜𝑜
𝑞𝑞𝑟𝑟𝑜𝑜(𝑡𝑡) −

1
ℎ𝑜𝑜

𝑞𝑞(0, 𝑡𝑡)      (1.3) 

 
In (1.3) the outside air temperature and the net absorbed radiant heat term can be combined and denoted 
by the sol-air temperature 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡). Thus: 
 

𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) −
1

ℎ𝑜𝑜
𝑞𝑞(0, 𝑡𝑡)      (1.4) 

h𝑜𝑜 h𝑖𝑖 
 

𝜃𝜃(0, 𝑡𝑡) 𝜃𝜃(𝐿𝐿, 𝑡𝑡) 𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡) 𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡) 

Boundary layer 
 

Boundary layer 
 

𝑥𝑥 = 0 𝑥𝑥 = 𝐿𝐿 

𝑞𝑞(0, 𝑡𝑡) 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) 
 𝑞𝑞𝑜𝑜(𝑡𝑡) 

 
𝑞𝑞𝑖𝑖(𝑡𝑡) 
 

Wall 

𝑞𝑞𝑟𝑟𝑜𝑜(𝑡𝑡) 
 

𝑞𝑞𝑟𝑟𝑖𝑖(𝑡𝑡) 
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The Laplace transform of the heat flux equation (1.2) is 
 

𝑄𝑄𝑜𝑜(𝑠𝑠) = 𝑄𝑄(0, 𝑠𝑠)      (1.5) 
 
and the Laplace transform of the temperature equation (1.4) is 
 

𝛩𝛩(0, 𝑠𝑠) = 𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠) −
1

ℎ𝑜𝑜
𝑄𝑄(0, 𝑠𝑠)      (1.6) 

 
We can write (1.5) and (1.6) in matrix form, as follows: 
 

�𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠)
𝑄𝑄𝑜𝑜(𝑠𝑠) � = �1 1 ℎ𝑜𝑜⁄

0 1
� �𝛩𝛩(0, 𝑠𝑠)

𝑄𝑄(0, 𝑠𝑠)�       (1.7) 

 
We now have an equation for the heat flux in terms of the Laplace domain variable 𝑠𝑠. We shall now 
assume that the temperature excitation 𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠) is sinusoidal with angular frequency 𝜔𝜔[rad s−1]. Equation 
(1.7) is just as valid if we replace 𝑠𝑠 with 𝑗𝑗𝜔𝜔 where 𝑗𝑗 = √−1. Equation (1.7) becomes 
 

�
𝛩𝛩𝑒𝑒𝑒𝑒(𝑗𝑗𝑗𝑗)
𝑄𝑄𝑜𝑜(𝑗𝑗𝑗𝑗) � = �1 1 ℎ𝑜𝑜⁄

0 1
� �𝛩𝛩(0, 𝑗𝑗𝑗𝑗)

𝑄𝑄(0, 𝑗𝑗𝑗𝑗)�       (1.8) 

 
The sol-air temperature is sinusoidal, so 
 

𝛩𝛩𝑒𝑒𝑒𝑒(𝑗𝑗𝑗𝑗) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.9) 
 
where 𝐴𝐴𝑒𝑒𝑒𝑒 is the amplitude of the sol-air temperature and Im means “the imaginary part of”. 
 
If we replace 𝛩𝛩𝑒𝑒𝑒𝑒(𝑗𝑗𝑗𝑗) in (1.8) with 𝐴𝐴𝑒𝑒𝑒𝑒 then (1.8) becomes 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

� = �1 1 ℎ𝑜𝑜⁄
0 1

� �
𝐴𝐴0

𝑄𝑄(0)�       (1.10) 

 
where 𝐴𝐴0 , 𝑄𝑄𝑜𝑜 and 𝑄𝑄(0) are complex constants. In (1.10) 𝐴𝐴𝑒𝑒𝑒𝑒 is used as a reference temperature and the 
phases of all the other quantities are determined with respect to the sol-air temperature 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔). If 
we put 𝐴𝐴0 = 0 in (1.10) then 
 

𝑄𝑄𝑜𝑜 = 𝑄𝑄(0) = ℎ𝑜𝑜𝐴𝐴𝑒𝑒𝑒𝑒 
 
so 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = 𝑄𝑄𝑜𝑜 sin(𝜔𝜔𝜔𝜔) = ℎ𝑜𝑜𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔) = ℎ𝑜𝑜Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.11) 
 
and 
 

𝑞𝑞(0, 𝑡𝑡) = 𝑄𝑄(0) sin(𝜔𝜔𝜔𝜔) = ℎ𝑜𝑜𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔) = ℎ𝑜𝑜Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.12) 
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1.2 Inside surface 
 
From Figure 1, the time-varying heat flux 𝑞𝑞(𝐿𝐿, 𝑡𝑡) out of the inside surface is 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = ℎ𝑖𝑖[𝜃𝜃(𝐿𝐿, 𝑡𝑡) − 𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡)] − 𝑞𝑞𝑟𝑟𝑟𝑟(𝑡𝑡)      (1.13) 
 
Again, we can regard the boundary layer on the surface as a slab. Since the slab has negligible thermal 
capacity, the heat flux into the slab must be the same as the heat flux leaving the slab, so 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑞𝑞(𝐿𝐿, 𝑡𝑡)      (1.14) 
 
Rearranging (1.13) so that the wall surface temperature is on the left-hand side gives 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝜃𝜃𝑎𝑎𝑎𝑎(𝑡𝑡) +
1
ℎ𝑖𝑖

𝑞𝑞𝑟𝑟𝑟𝑟(𝑡𝑡) +
1
ℎ𝑖𝑖

𝑞𝑞(𝐿𝐿, 𝑡𝑡)      (1.15) 

 
In (1.15) the indoor temperature and the net absorbed radiant heat term can be combined and denoted 
by the environmental temperature 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡). Thus: 
 

𝜃𝜃(𝐿𝐿, 𝑡𝑡) = 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) +
1
ℎ𝑖𝑖

𝑞𝑞(𝐿𝐿, 𝑡𝑡)      (1.16) 

 
The Laplace transform of the heat flux equation (1.14) is 
 

𝑄𝑄𝑖𝑖(𝑠𝑠) = 𝑄𝑄(𝐿𝐿, 𝑠𝑠)      (1.17) 
 
and the Laplace transform of the temperature equation (1.16) is 
 

𝛩𝛩(𝐿𝐿, 𝑠𝑠) = 𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠) +
1
ℎ𝑖𝑖

𝑄𝑄(𝐿𝐿, 𝑠𝑠)      (1.18) 

 
We can write (1.17) and (1.18) in matrix form, as follows: 
 

�𝛩𝛩(𝐿𝐿, 𝑠𝑠)
𝑄𝑄(𝐿𝐿, 𝑠𝑠)� = �1 1 ℎ𝑖𝑖⁄

0 1
� �𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠)

𝑄𝑄𝑖𝑖(𝑠𝑠) �       (1.19) 

 
We now have an equation for the heat flux in terms of the Laplace domain variable 𝑠𝑠. We shall now 
assume that the temperature excitation 𝛩𝛩𝑒𝑒𝑒𝑒(𝑠𝑠) is sinusoidal with angular frequency 𝜔𝜔[rad s−1]. Equation 
(1.19) is just as valid if we replace 𝑠𝑠 with 𝑗𝑗𝑗𝑗 where 𝑗𝑗 = √−1. Equation (1.18) becomes 
 

�𝛩𝛩(𝐿𝐿, 𝑗𝑗𝑗𝑗)
𝑄𝑄(𝐿𝐿, 𝑗𝑗𝑗𝑗)� = �1 1 ℎ𝑖𝑖⁄

0 1
� �

𝛩𝛩𝑒𝑒𝑒𝑒(𝑗𝑗𝑗𝑗)
𝑄𝑄𝑖𝑖(𝑗𝑗𝑗𝑗) �       (1.20) 

 
The temperature on the inside surface is sinusoidal, so 
 

𝛩𝛩(𝐿𝐿, 𝑗𝑗𝑗𝑗) = 𝐴𝐴𝐿𝐿 sin(𝜔𝜔𝜔𝜔) = Im�𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.21) 
 
where 𝐴𝐴𝐿𝐿 is the amplitude of the inside surface temperature and Im means “the imaginary part of”. 
 
If we replace 𝛩𝛩(𝐿𝐿, 𝑗𝑗𝑗𝑗) in (1.20) with 𝐴𝐴𝐿𝐿 then (1.20) becomes 
 

�
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)� = �1 1 ℎ𝑖𝑖⁄
0 1

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

�       (1.22) 
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where 𝐴𝐴𝑒𝑒𝑒𝑒 , 𝑄𝑄𝑖𝑖 and 𝑄𝑄(𝐿𝐿) are complex constants. In (1.22) 𝐴𝐴𝐿𝐿 is used as a reference temperature and the 
phases of all the other quantities are determined with respect to the inside surface temperature 
𝐴𝐴𝐿𝐿 sin(𝜔𝜔𝜔𝜔). If we put 𝐴𝐴𝑒𝑒𝑒𝑒 = 0 in (1.22) then 
 

𝑄𝑄𝑖𝑖 = 𝑄𝑄(𝐿𝐿) = ℎ𝑖𝑖𝐴𝐴𝐿𝐿 
 
so 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑄𝑄𝑖𝑖 sin(𝜔𝜔𝜔𝜔) = ℎ𝑖𝑖𝐴𝐴𝐿𝐿 sin(𝜔𝜔𝜔𝜔) = ℎ𝑖𝑖Im�𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.23) 
 
and 
 

𝑞𝑞(𝐿𝐿, 𝑡𝑡) = 𝑄𝑄(𝐿𝐿) sin(𝜔𝜔𝜔𝜔) = ℎ𝑖𝑖𝐴𝐴𝐿𝐿 sin(𝜔𝜔𝜔𝜔) = ℎ𝑖𝑖Im�𝐴𝐴𝐿𝐿𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.24) 
 

1.3 Complex transmission matrix for a composite wall 
 
A composite wall consists of 𝑛𝑛 slabs of different materials in parallel. In the previous report in this 
series, Ref. [1], we showed that for a composite wall, 
 

�
𝐴𝐴0

𝑄𝑄(0)� = � cosh 𝑀𝑀1
sinh 𝑀𝑀1

𝑁𝑁1
𝑁𝑁1 sinh 𝑀𝑀1 cosh 𝑀𝑀1

� � cosh 𝑀𝑀2
sinh 𝑀𝑀2

𝑁𝑁2
𝑁𝑁2 sinh 𝑀𝑀2 cosh 𝑀𝑀2

� ⋯ 

 

⋯ � cosh 𝑀𝑀𝑛𝑛−1
sinh 𝑀𝑀𝑛𝑛−1

𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑛𝑛−1 sinh 𝑀𝑀𝑛𝑛−1 cosh 𝑀𝑀𝑛𝑛−1

� � cosh 𝑀𝑀𝑛𝑛
sinh 𝑀𝑀𝑛𝑛

𝑁𝑁𝑛𝑛
𝑁𝑁𝑛𝑛 sinh 𝑀𝑀𝑛𝑛 cosh 𝑀𝑀𝑛𝑛

� �
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)�       (1.25) 

 
The thickness 𝐿𝐿 of the composite slab is 
 

𝐿𝐿 = � 𝑙𝑙𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
where 𝑙𝑙𝑖𝑖 is the thickness of the 𝑖𝑖th slab. We must calculate 𝑀𝑀1, 𝑀𝑀2, …, 𝑀𝑀𝑛𝑛−1, 𝑀𝑀𝑛𝑛 and 𝑁𝑁1, 𝑁𝑁2, …, 𝑁𝑁𝑛𝑛−1, 
𝑁𝑁𝑛𝑛 before we can calculate the elements in the matrices and carry out the matrix multiplication. 
 
We can regard the boundary layers as additional slabs. The heat output from one slab becomes the input 
to the next slab, so we can add the extra slabs to the beginning and the end of the sequence in (1.25): 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

� = �1 1 ℎ𝑜𝑜⁄
0 1

� � cosh 𝑀𝑀1
sinh 𝑀𝑀1

𝑁𝑁1
𝑁𝑁1 sinh 𝑀𝑀1 cosh 𝑀𝑀1

� � cosh 𝑀𝑀2
sinh 𝑀𝑀2

𝑁𝑁2
𝑁𝑁2 sinh 𝑀𝑀2 cosh 𝑀𝑀2

� ⋯ 

 

⋯ � cosh 𝑀𝑀𝑛𝑛−1
sinh 𝑀𝑀𝑛𝑛−1

𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑛𝑛−1 sinh 𝑀𝑀𝑛𝑛−1 cosh 𝑀𝑀𝑛𝑛−1

� � cosh 𝑀𝑀𝑛𝑛
sinh 𝑀𝑀𝑛𝑛

𝑁𝑁𝑛𝑛
𝑁𝑁𝑛𝑛 sinh 𝑀𝑀𝑛𝑛 cosh 𝑀𝑀𝑛𝑛

� �1 1 ℎ𝑖𝑖⁄
0 1

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

�       (1.26) 
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Once we have carried out the matrix multiplications, we can write (1.26) in the compact form 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

� = �
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 𝑧𝑧4

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

�       (1.27) 

 
The square matrix in (1.27) is the complex transmission matrix for a composite wall with boundary 
layers on the outside and inside surfaces. 
 
To apply (1.27) to the heating of buildings, we assume that the sol-air temperature variation is 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒sin(𝜔𝜔𝜔𝜔) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (1.28) 
 
where 𝐴𝐴𝑒𝑒𝑒𝑒 is the amplitude of the sol-air temperature and Im means “the imaginary part of”. The 
amplitude of the environmental temperature 𝐴𝐴𝑒𝑒𝑒𝑒 is set to zero. Eq. (1.27) reduces to 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

� = �
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 𝑧𝑧4

� � 0
𝑄𝑄𝑖𝑖

�       (1.29) 

 
From (1.29) we obtain: 
 

𝐴𝐴𝑒𝑒𝑒𝑒 = 𝑧𝑧2𝑄𝑄𝑖𝑖 
 
and 
 

𝑄𝑄𝑜𝑜 = 𝑧𝑧4𝑄𝑄𝑖𝑖 
 
From these two equations we obtain 
 

𝑄𝑄𝑖𝑖 =
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
      (1.30) 

 
and 
 

𝑄𝑄𝑜𝑜 = 𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
      (1.31) 

 
The instantaneous heat flux on the indoor side is 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (1.32) 

 
and the instantaneous heat flux on the outdoor side is 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im�𝑄𝑄𝑜𝑜𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (1.33) 
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2 Example 1 
 
The composite wall in Ref. [1] now has boundary layers on the inside and outside. On the outside 
surface the convection heat transfer coefficient is 25 W m−2 K−1. On the inside surface the coefficient 
is 7.7 W m−2 K−1. The sol-air temperature is sinusoidal with a mean of 0°C and an amplitude of 10°C. 
The peak in sol-air temperature occurs at 3:00 pm. The indoor environmental temperature is maintained 
at 0°C. Calculate: 
 

a. the steady thermal transmittance of the wall and boundary layers, 
b. the transmission matrix for the wall and boundary layers, 
c. the heat flux at the edge of the inside boundary, and 
d. the heat flux at the edge of the outside boundary layer. 

 
 
(a) The steady thermal transmittance (𝑈𝑈 value) of a composite wall with 𝑛𝑛 layers and a boundary layer 
on each side is given by 
 

1
𝑈𝑈

=
1

ℎ𝑜𝑜
+ �

𝑙𝑙𝑖𝑖

𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+
1
ℎ𝑖𝑖

 

 
where 𝑙𝑙𝑖𝑖 and 𝑘𝑘𝑖𝑖 are the thickness and the thermal conductivity of the 𝑖𝑖th layer, respectively. Hence 
 

1
𝑈𝑈

=
1

25
+

0.22
0.77

+
0.05

0.042
+

0.0125
0.21

+
1

7.7
= 1.70558 m2 K W−1 

 
so 𝑈𝑈 is 0.58631 W m−2 K−1. 
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(b) From Ref. [1], p. 12, the transmission matrix for the composite wall is 
 

𝒛𝒛 = �
(−4.43756 + 𝑗𝑗2.08549) (−1.95249 + 𝑗𝑗4.42465)
(−47.0447 − 𝑗𝑗15.6345) (−45.3168 + 𝑗𝑗18.7316)�       (2.1) 

 
The transmission matrix for the outside boundary layer is 
 

�1
1

ℎ𝑜𝑜
0 1

� = �1
1

25
0 1

� = �1 0.04
0 1 �       (2.2) 

 
The transmission matrix for the inside boundary layer is 
 

�1
1
ℎ𝑖𝑖

0 1
� = �1

1
7.7

0 1
� = �1 0.12987013

0 1 �       (2.3) 

 
From (1.26), the transmission matrix for the wall, including the boundary layers, is 
 

�
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 z4

� = �1 0.04
0 1 � �

(−4.43756 + 𝑗𝑗2.08549) (−1.95249 + 𝑗𝑗4.42465)
(−47.0447 − 𝑗𝑗15.6345) (−45.3168 + 𝑗𝑗18.7316)� �1 0.12987

0 1 �       (2.4) 

 
Multiplying the first two matrices on the right-hand side of (2.4) gives 
 

�1 0.04
0 1 � �

(−4.43756 + 𝑗𝑗2.08549) (−1.95249 + 𝑗𝑗4.42465)
(−47.0447 − 𝑗𝑗15.6345) (−45.3168 + 𝑗𝑗18.7316)� 

 

= �
(−6.31935 + 𝑗𝑗1.46011) (−3.76516 + 𝑗𝑗5.17391)
(−47.0447 − 𝑗𝑗15.6345) (−45.3168 + 𝑗𝑗18.7316)� 

 
Multiplying this product by the third matrix on the right-hand side of (2.4) gives 
 

�
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 z4

� = �
(−6.31935 + 𝑗𝑗1.46011) (−3.76516 + 𝑗𝑗5.17391)
(−47.0447 − 𝑗𝑗15.6345) (−45.3168 + 𝑗𝑗18.7316)� �1 0.12987013

0 1 � 

 

= �
(−6.31935 + 𝑗𝑗1.46011) (−4.58586 + 𝑗𝑗5.36354)
(−47.0447 − 𝑗𝑗15.6345) (−51.4265 + 𝑗𝑗16.7011)�       (2.5) 

 
This is the transmission matrix for the composite wall with boundary layers. 
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(c) The sinusoidal variation in sol-air temperature on the outdoor side is given by (1.28): 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒sin(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗+𝜙𝜙� 
 
For diurnal temperature variations, the angular speed 𝜔𝜔 is 2𝜋𝜋 ÷ (60 × 60 × 24) = 2𝜋𝜋/86400 rad s−1. 
The peak in sol-air temperature occurs at 15:00, so the offset 𝜙𝜙 must be −2𝜋𝜋(15 − 6)/24 = −0.75𝜋𝜋 
rad. The amplitude 𝐴𝐴𝑒𝑒𝑒𝑒 of the temperature variation is 10°C, so (1.28) becomes 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 10 sin(𝜔𝜔𝜔𝜔 − 0.75𝜋𝜋) = Im�10𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋)�      (2.6) 
 
Substituting the values of 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝜙𝜙 into (1.32) gives the variation in heat flux on the indoor side: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑒𝑒
1
𝑧𝑧2

𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔+𝜙𝜙)� = Im �10
1
𝑧𝑧2

𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋)�       (2.7) 

 
and substituting the values of 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝜙𝜙 into (1.33) gives the variation in heat flux at the outdoor side: 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔+𝜙𝜙)� = Im �10

𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋)�       (2.8) 

 
The complex number 1/𝑧𝑧2 required in (2.7) is 
 

1
𝑧𝑧2

=
1

(−4.58586 + 𝑗𝑗5.36354) 

 

=
(−4.58586 − 𝑗𝑗5.36354)

(−4.58586 + 𝑗𝑗5.36354)(−4.58586 − 𝑗𝑗5.36354) 

 

=
−4.58586 − 𝑗𝑗5.36354

4.585862 − 𝑗𝑗25.363542 

 

=
−4.58586 − 𝑗𝑗5.36354

49.7977
 

 
= −0.09209 − 𝑗𝑗0.10771 

 
The complex number 1/𝑧𝑧2 can be represented in the complex plane as shown in Figure 2. The amplitude 
of 1/𝑧𝑧2 is 
 

Amplitude = �Re2 + Im2 = �(−0.09209)2 + (−0.10771)2 = 0.14171 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation on the inside surface of the wall will lag the temperature variation on the outside 
surface, so the phase of the heat flux variation will be negative relative to the temperature variation. 
Measuring the phase in the clockwise (negative) direction from the positive Real axis gives 
 

Phase =  −2.2782 rad (= −130.5°) 
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Figure 2  Amplitude and phase of 1/𝑧𝑧2 

 
 
We can now write 1/𝑧𝑧2 as 
 

1
𝑧𝑧2

= 0.14171[cos(−2.2782) + 𝑗𝑗 sin(−2.2782)] 

 
= 0.14171𝑒𝑒−𝑗𝑗2.2782      (2.9) 

 
Substituting (2.9) into (2.7) gives the heat flux at the indoor side: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�10 × 0.14171𝑒𝑒−𝑗𝑗2.2782𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋)� 
 

= Im�1.4171𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋−2.2782)� 
 

= 1.4171 sin(𝜔𝜔𝜔𝜔 − 0.75𝜋𝜋 − 2.2782)      (2.10) 
 
The peak heat flux on the indoor side lags the peak sol-air temperature by 2.2782 rad (= 130.5°). In 
terms of hours, the lag is 24 hr × 130.5°/360° = 8.7 hr (8 hr 42 min). 
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(d) The complex number 𝑧𝑧4/𝑧𝑧2 required in (2.8) is 
 

𝑧𝑧4

𝑧𝑧2
= (−51.4265 + 𝑗𝑗16.7011)(−0.09209 − 𝑗𝑗0.10771) 

 
= 4.7359 + 𝑗𝑗5.5391 − 𝑗𝑗1.5380 − 𝑗𝑗21.7989 

 
= 6.5347 + 𝑗𝑗4.0011 

 
The complex number 𝑧𝑧4/𝑧𝑧2 can be represented in the complex plane as shown in Figure 3. The 
amplitude of 𝑧𝑧4/𝑧𝑧2 is 
 

Amplitude = �Re2 + Im2 = �(6.5347)2 + (4.0011)2 = 7.6623 
 
We know the heat flux variation on the outdoor side will lead the variation in sol-air temperature, so 
the phase of the heat flux variation will be positive relative to the temperature variation. Measuring the 
phase in the anticlockwise (positive) direction from the positive Real axis gives 
 

Phase =  0.5494 rad (= 31.48°) 
 
We can now write 𝑧𝑧4/𝑧𝑧2 as 
 

𝑧𝑧4

𝑧𝑧2
= 7.6623(cos 0.5494 + 𝑗𝑗 sin 0.5494) 

 
= 7.6623𝑒𝑒𝑗𝑗0.5494      (2.11) 

 
 
Figure 3  Amplitude and phase of 𝑧𝑧4/𝑧𝑧2 
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 =

 4
.0

01
1 

Phase = 0.5494 rad (= 31.48°) 

5 

10 

5 10 
−0.1 

−0.2 

−0.2 

−0.1 

Im 

Re 

+ve Phase 



ATKINSON SCIENCE LIMITED  THEORY GUIDE 

16 
 

Substituting (2.11) into (2.8) gives 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im�10 × 7.6623𝑒𝑒𝑗𝑗0.5494𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋)� 
 

= Im�76.623𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.75𝜋𝜋+0.5494)� 
 

= 76.623 sin(𝜔𝜔𝜔𝜔 − 0.75𝜋𝜋 + 0.5494)      (2.12) 
 
The peak heat flux on the outdoor side leads the peak sol-air temperature by 0.5494 rad (= 31.48°). 
In terms of hours, the lead is 24 hr × 31.48°/360° = 2.099 hr (2 hr 6 min). 
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3 Inverse transmission matrix 
 

3.1 Homogeneous slab 
 
For a homogeneous slab without boundary layers, the transmission matrix is 
 

�
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 z4

� = � cosh 𝑀𝑀
sinh 𝑀𝑀

𝑁𝑁
𝑁𝑁 sinh 𝑀𝑀 cosh 𝑀𝑀

� 

 
where 
 

𝑀𝑀 = �𝑗𝑗𝑗𝑗 𝛼𝛼⁄ 𝐿𝐿 
 
and 
 

𝑁𝑁 = 𝑘𝑘�𝑗𝑗𝑗𝑗 𝛼𝛼⁄  
 
The determinant of the transmission matrix is cosh2𝑀𝑀 − sinh2𝑀𝑀 = 1, so the inverse transmission matrix 
is given by 
 

�𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 Z4

� = � cosh(𝑀𝑀) −
sinh(𝑀𝑀)

𝑁𝑁
−𝑁𝑁 sinh(𝑀𝑀) cosh(𝑀𝑀)

�       (3.1) 

 

3.2 Composite wall 
 
For a composite wall made up of 𝑛𝑛 slabs, we can use matrix multiplication to obtain the inverse 
transmission matrix: 
 

�𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 Z4

� = � cosh(𝑀𝑀𝑛𝑛) −
sinh(𝑀𝑀𝑛𝑛)

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh(𝑀𝑀𝑛𝑛) cosh(𝑀𝑀𝑛𝑛)

� � cosh(𝑀𝑀𝑛𝑛−1) −
sinh(𝑀𝑀𝑛𝑛−1)

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh(𝑀𝑀𝑛𝑛) cosh(𝑀𝑀𝑛𝑛)

� ⋯ 

 

⋯ � cosh(𝑀𝑀2) −
sinh(𝑀𝑀2)

𝑁𝑁2
−𝑁𝑁2 sinh(𝑀𝑀2) cosh(𝑀𝑀2)

� � cosh(𝑀𝑀1) −
sinh(𝑀𝑀1)

𝑁𝑁1
−𝑁𝑁1 sinh(𝑀𝑀1) cosh(𝑀𝑀1)

�       (3.2) 

 
Note that we have used the rule (AB)−1 = B−1A−1 in (3.2), where A and B are square matrices. We 
must calculate 𝑀𝑀1, 𝑀𝑀2, …, 𝑀𝑀𝑛𝑛−1, 𝑀𝑀𝑛𝑛 and 𝑁𝑁1, 𝑁𝑁2, …, 𝑁𝑁𝑛𝑛−1, 𝑁𝑁𝑛𝑛 before we can calculate the elements in 
the matrices and carry out the matrix multiplication. 
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3.3 Convection and radiation at the surfaces 
 
The inverse of Eq. (1.10) is 
 

�
𝐴𝐴0

𝑄𝑄(0)� = �1 − 1 ℎ𝑜𝑜⁄
0 1

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

�       (3.3) 

 
and the inverse of Eq. (1.22) is 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

� = �1 − 1 ℎ𝑖𝑖⁄
0 1

� �
𝐴𝐴𝐿𝐿

𝑄𝑄(𝐿𝐿)�       (3.4) 

 
To account for convection and radiation, we add (3.3) and (3.4) to the end and to the beginning of the 
sequence in (3.2): 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

� = �1 − 1 ℎ𝑖𝑖⁄
0 1

� � cosh(𝑀𝑀𝑛𝑛) −
sinh(𝑀𝑀𝑛𝑛)

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh(𝑀𝑀𝑛𝑛) cosh(𝑀𝑀𝑛𝑛)

� � cosh(𝑀𝑀𝑛𝑛−1) −
sinh(𝑀𝑀𝑛𝑛−1)

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh(𝑀𝑀𝑛𝑛) cosh(𝑀𝑀𝑛𝑛)

� ⋯ 

 

⋯ � cosh(𝑀𝑀2) −
sinh(𝑀𝑀2)

𝑁𝑁2
−𝑁𝑁2 sinh(𝑀𝑀2) cosh(𝑀𝑀2)

� � cosh(𝑀𝑀1) −
sinh(𝑀𝑀1)

𝑁𝑁1
−𝑁𝑁1 sinh(𝑀𝑀1) cosh(𝑀𝑀1)

� �1 − 1 ℎ𝑜𝑜⁄
0 1

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

�       (3.5) 

 
After multiplying the matrices, we can write (3.5) as: 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

� = �𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� �𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑜𝑜

�       (3.6) 

 
To apply (3.6) to the heating of buildings, we assume that the inside environmental temperature is 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (3.7) 
 
where 𝐴𝐴𝑒𝑒𝑒𝑒 is the amplitude of the environmental temperature and Im means “the imaginary part of”. If 
the sol-air temperature is maintained at zero so 𝐴𝐴𝑒𝑒𝑒𝑒 = 0, then (3.6) reduces to 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖

� = �𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� � 0
𝑄𝑄𝑜𝑜

�       (3.8) 

 
where 𝑄𝑄𝑖𝑖 and 𝑄𝑄𝑜𝑜 are complex constants. In (3.8), 𝐴𝐴𝑒𝑒𝑒𝑒 is used as a reference temperature and the phases 
of the other quantities are determined with respect to the environmental temperature 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) given by 
(3.7). 
 
On the outdoor side the variation in heat flux is 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im�𝑄𝑄𝑜𝑜𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑒𝑒
1

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.9) 

 
and on the indoor side the variation in heat flux is 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.10) 
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4 Example 2 
 
For the composite wall in Example 1, the environmental temperature is sinusoidal with a mean of 0°C 
and an amplitude of 5°C. The peak in environmental temperature occurs at 12:00 noon. The sol-air 
temperature is constant at 0°C. Calculate the heat flux (a) at the edge of the outside boundary, and (b) 
at the edge of the inside boundary layer. 
 
(a) From Example 1, the complex transmission matrix for the composite wall with boundary layers is 
 

𝒛𝒛 = �
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 𝑧𝑧4

� = �
(−6.31935 + 𝑗𝑗1.46011) (−4.58586 + 𝑗𝑗5.36354)
(−47.0447 − 𝑗𝑗15.6345) (−51.4265 + 𝑗𝑗16.7011)� 

 
The inverse of this matrix is 
 

𝒁𝒁 = �𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� = �
(−51.4321 + 𝑗𝑗16.6913) (4.58715 − 𝑗𝑗5.36282)
(47.0435 + 𝑗𝑗15.6448) (−6.31991 + 𝑗𝑗1.45887)� 

 
The sinusoidal temperature variation on the indoor side is given by (3.7): 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗+𝜑𝜑� 
 
The peak in temperature occurs at 12:00, so the offset 𝜑𝜑 must be −2𝜋𝜋(12 − 6)/24 = −0.5𝜋𝜋 rad. The 
amplitude 𝐴𝐴𝑒𝑒𝑒𝑒 of the temperature variation is 5°C, so (3.7) becomes 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 5 sin(𝜔𝜔𝜔𝜔 − 0.5𝜋𝜋) = Im�5𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋)�      (4.1) 
 
Substituting the values of 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝜑𝜑 into (3.9) gives the variation in heat flux on the outdoor side: 
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im �5
1

𝑍𝑍2
𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋)�       (4.2) 

 
and substituting the values of 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝜑𝜑 into (3.10) gives the variation in heat flux on the indoor side: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �5
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋)�       (4.3) 

 
The term 1/𝑍𝑍2 required in (4.2) is 
 

1
𝑍𝑍2

=
1

4.58715 − 𝑗𝑗5.36282
 

 

=
4.58715 + 𝑗𝑗5.36282

(4.58715 − 𝑗𝑗5.36282)(4.58715 + 𝑗𝑗5.36282) 

 

=
4.58715 + 𝑗𝑗5.36282

4.587152 + 5.362822 
 

= 0.092108 + 𝑗𝑗0.10768 
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The complex number 1/𝑍𝑍2 can be represented in the complex plane as shown in Figure 4. The amplitude 
of 1/𝑍𝑍2 is 
 

Amplitude = �Re2 + Im2 = �0.0921082 + 0.107682 = 0.14170 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation on the outside surface of the wall will lag the temperature variation on the inside 
surface, so the phase of the heat flux variation will be negative relative to the temperature variation. 
Measuring the phase in the clockwise (negative) direction from the positive Real axis gives 
 

Phase =  −5.4200 rad (= −310.5°) 
 
 
Figure 4  Amplitude and phase of 1/𝑍𝑍2 

 
 
 
We can now write 1/𝑍𝑍2 as 
 

1
𝑍𝑍2

= 0.14171[cos(−5.4200) + 𝑗𝑗 sin(−5.4200)] 

 
= 0.14171𝑒𝑒−𝑗𝑗5.4200      (4.4) 

 
Substituting (4.4) into (4.2) gives  
 

𝑞𝑞𝑜𝑜(𝑡𝑡) = Im�5 × 0.14171𝑒𝑒−𝑗𝑗5.4200𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋)� 
 

= Im�0.7085𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋−5.4200)� 
 

= 0.7085 sin(𝜔𝜔𝜔𝜔 − 0.5𝜋𝜋 − 5.4200)      (4.5) 
 

Re = 0.092108 

Im
 =

 0
.1

07
68
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The peak heat flux of +0.7085 W m−2 on the outdoor side lags the peak environmental temperature by 
5.4200 rad (= 310.5°). In terms of hours, the lag is 24 hr × 310.5°/360° = 20.7 hr (20 hr 42 min). 
This is the time difference between the positive peak in 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) and the positive peak in 𝑞𝑞𝑜𝑜(𝑡𝑡). We would 
expect a positive peak in the environmental temperature to give rise to a negative peak in heat flux on 
the outdoor side, because heat flows in the negative 𝑥𝑥 direction when 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) is positive. The time lag 
between the negative peak in heat flux and the positive peak in temperature is 20 hr 42 min − 12 hr = 
8 hr 42 min, which is much shorter. 
 
Notice that 8 hr 42 min is the same as the time between the sol-air temperature 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) and the 
corresponding heat flux on the indoor side. The amplitude term 0.14171 is also the same. 
 
 
(b) The term 𝑍𝑍4/𝑍𝑍2 required in (4.3) is 
 

𝑍𝑍4

𝑍𝑍2
= (−6.31991 + 𝑗𝑗1.45887)(0.092108 + 𝑗𝑗0.10768) 

 
= −0.5821143 − 𝑗𝑗0.6805279 + 𝑗𝑗0.1343736 + 𝑗𝑗20.1570911 

 
= −0.7392054 − 𝑗𝑗0.5461543 

 
The complex number 𝑍𝑍4/𝑍𝑍2 can be represented in the complex plane as shown in Figure 5. The 
amplitude of 𝑍𝑍4/𝑍𝑍2 is 
 

Amplitude = �Re2 + Im2 = �(−0.73921)2 + (−0.54615)2 = 0.9190806 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation on the inside surface of the wall will lead the temperature variation on the inside 
surface, so the phase of the heat flux variation will be positive relative to the temperature variation. 
Measuring the phase in the anticlockwise (positive) direction from the positive Real axis gives 
 

Phase =  3.7779 rad (= 216.46°) 
 
We can now write 𝑍𝑍4/𝑍𝑍2 as 
 

𝑍𝑍4

𝑍𝑍2
= 0.91908[cos 3.7779 + 𝑗𝑗 sin 3.7779] 

 
= 0.91908𝑒𝑒𝑗𝑗3.7779      (5.16) 

 
Substituting (5.16) into (5.13) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�5 × 0.91908𝑒𝑒𝑗𝑗3.7779𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋)� 
 

= Im�4.5954𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−0.5𝜋𝜋+3.7779)� 
 

= 4.5954 sin(𝜔𝜔𝜔𝜔 − 0.5𝜋𝜋 + 3.7779)      (5.17) 
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The peak heat flux of +4.5954 W m−2 on the indoor side leads the peak environmental temperature by 
3.7779 rad (= 216.46°). In terms of hours, the lead is 24 hr × 216.46°/360° = 14.431 hr 
(14 hr 26 min). This is the time difference between the positive peak in 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) and the positive peak in 
𝑞𝑞𝑖𝑖(𝑡𝑡). We would expect a positive peak in 𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡)to be caused by a negative peak 𝑞𝑞𝑖𝑖(𝑡𝑡). The time lead 
between the negative peak in heat flux and the positive peak in environmental temperature is 
14 hr 26 min − 12 hr = 2 hr 26 min, which is much shorter. 
 
 
Figure 5  Amplitude and phase of 𝑍𝑍4/𝑍𝑍2 
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