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1 Introduction 
 
In the previous report in this series, Ref. [1], we derived the complex transmission matrix and the inverse 
complex transmission matrix for a composite wall with a boundary layer on each side. We showed how 
the two matrices can be used to determine the net heat flux through each side of the wall when the 
sol-air temperature and the environmental temperature are fluctuating sinusoidally. Figure 1 
summarises the calculation method. We use the superposition principle to add the heat fluxes calculated 
when the sol-air temperature is fluctuating sinusoidally and the environmental temperature is constant 
to the heat fluxes calculated when environmental temperature is fluctuating sinusoidally and the sol-air 
temperature is constant. 𝑧𝑧2 and 𝑧𝑧4 are elements of the transmission matrix and 𝑍𝑍2 and 𝑍𝑍4 are elements 
of the inverse transmission matrix. 
 
 
Figure 1  Superposition principle used to calculate the heat fluxes through a wall 

 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) = 0 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �

𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑖𝑖 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 0 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im �
𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 
𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑖𝑖 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� + Im �

𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �

𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� + Im �𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

Wall 
Boundary layer Boundary layer 
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In this report we shall review how the two matrices are used calculate the heat fluxes on the two sides 
of a composite wall with boundary layers. Then we shall introduce some dynamic thermal parameters 
associated with the matrices. 
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2 Transmission matrix 
 
To apply the transmission matrix to the heating of buildings, we assume that the variation in the sol-air 
temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡) on the outdoor side of the wall is sinusoidal and the environmental temperature on 
the indoor side 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) is zero: 
 

�𝐴𝐴𝑒𝑒𝑒𝑒
𝑄𝑄𝑒𝑒

� = �
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 𝑧𝑧4

� � 0
𝑄𝑄𝑖𝑖

�       (2.1) 

 
The time-varying sol-air temperature is given by 
 

𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (2.2) 
 
where 𝐴𝐴𝑒𝑒𝑜𝑜 is the amplitude of the sol-air temperature and Im means “the imaginary part of”. 𝑄𝑄𝑜𝑜 and 𝑄𝑄𝑖𝑖 
are complex constants. In (2.1) 𝐴𝐴𝑒𝑒𝑜𝑜 is used as a reference temperature and the phases of all the other 
quantities are determined with respect to the temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡). 
 
From (2.1) we obtain: 
 

𝐴𝐴𝑒𝑒𝑒𝑒 = 𝑧𝑧2𝑄𝑄𝑖𝑖      (2.3) 
 
and 
 

𝑄𝑄𝑒𝑒 = 𝑧𝑧4𝑄𝑄𝑖𝑖      (2.4) 
 
From these two equations we obtain 
 

𝑄𝑄𝑖𝑖 =
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
      (2.5) 

 
and 
 

𝑄𝑄𝑒𝑒 = 𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
      (2.6) 

 
The instantaneous heat flux through the inside surface of the wall is 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (2.7) 

 
and the instantaneous heat flux through the outside surface is 
 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im�𝑄𝑄𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑒𝑒
𝑧𝑧4

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (2.8) 
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The transmission matrix for a planar structure with 𝑛𝑛 layers is 
 

�
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 𝑧𝑧4

� = �1 1 ℎ𝑒𝑒⁄
0 1

� � cosh 𝑀𝑀1
sinh 𝑀𝑀1

𝑁𝑁1
𝑁𝑁1 sinh 𝑀𝑀1 cosh 𝑀𝑀1

� � cosh 𝑀𝑀2
sinh 𝑀𝑀2

𝑁𝑁2
𝑁𝑁2 sinh 𝑀𝑀2 cosh 𝑀𝑀2

� ⋯ 

 

⋯ � cosh 𝑀𝑀𝑛𝑛−1
sinh 𝑀𝑀𝑛𝑛−1

𝑁𝑁𝑛𝑛−1
𝑁𝑁𝑛𝑛−1 sinh 𝑀𝑀𝑛𝑛−1 cosh 𝑀𝑀𝑛𝑛−1

� � cosh 𝑀𝑀𝑛𝑛
sinh 𝑀𝑀𝑛𝑛

𝑁𝑁𝑛𝑛
𝑁𝑁𝑛𝑛 sinh 𝑀𝑀𝑛𝑛 cosh 𝑀𝑀𝑛𝑛

� �1 1 ℎ𝑖𝑖⁄
0 1

�       (2.9) 

 
where h𝑜𝑜 is the convection heat transfer coefficient on the outdoor face of the wall and h𝑖𝑖 is the 
coefficient on the indoor face. The complex constants 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖 are 
 

𝑀𝑀𝑖𝑖 = 𝑙𝑙𝑖𝑖�𝑗𝑗𝜔𝜔 𝛼𝛼𝑖𝑖⁄       (2.10) 
 
and 
 

𝑁𝑁𝑖𝑖 = 𝑘𝑘𝑖𝑖�𝑗𝑗𝜔𝜔 𝛼𝛼𝑖𝑖⁄       (2.11) 
 
In 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖, 𝑗𝑗 is the imaginary constant √−1, 𝜔𝜔 [rad s−1] is the angular frequency of the sinusoidal 
variation in the sol-air temperature, 𝑘𝑘𝑖𝑖 [W m−1 K−1] is the thermal conductivity of the 𝑖𝑖th layer, 
𝛼𝛼𝑖𝑖 [m2 s−1] is the thermal diffusivity of the 𝑖𝑖th layer, and 𝑙𝑙𝑖𝑖 [m] is the thickness of the 𝑖𝑖th layer. 
 
The angular frequency 𝜔𝜔 is 
 

𝜔𝜔 =
2𝜋𝜋
𝑇𝑇

      (2.12) 
 
where 𝑇𝑇 is the period of the fluctuations in sol-air temperature. 𝑇𝑇 is 24 hours (= 86400 s), so  
 

𝜔𝜔 =
2𝜋𝜋

86400
= 7.2722 × 10−5 rad s−1      (2.13) 

 
The thermal diffusivity of the 𝑖𝑖th layer 𝛼𝛼𝑖𝑖 is given by 
 

𝛼𝛼𝑖𝑖 =
𝑘𝑘𝑖𝑖

𝜌𝜌𝑖𝑖𝐶𝐶𝑖𝑖
      (2.14) 

 
where 𝜌𝜌𝑖𝑖 [kg m−3] and 𝐶𝐶𝑖𝑖 [J kg−1 K−1] are the density and the specific heat capacity of the 𝑖𝑖th layer, 
respectively. 
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3 Inverse transmission matrix 
 
In the previous report in this series, Ref. [1], we derived the inverse transmission matrix: 
 

�𝐴𝐴𝑒𝑒𝑖𝑖
𝑄𝑄𝑖𝑖

� = �𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� � 0
𝑄𝑄𝑒𝑒

�       (3.1) 

 
The time-varying environmental temperature is given by 
 

𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑖𝑖 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (3.2) 
 
where 𝐴𝐴𝑒𝑒𝑖𝑖 is the amplitude of the environmental temperature and Im means “the imaginary part of”. 𝑄𝑄𝑖𝑖 
and 𝑄𝑄𝑜𝑜 are complex constants. In (3.1) 𝐴𝐴𝑒𝑒𝑖𝑖 is used as a reference temperature and the phases of all the 
other quantities are determined with respect to the temperature 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡). 
 
From (3.1) we obtain: 
 

𝐴𝐴𝑒𝑒𝑖𝑖 = 𝑍𝑍2𝑄𝑄𝑒𝑒 
 
and 
 

𝑄𝑄𝑖𝑖 = 𝑍𝑍4𝑄𝑄𝑒𝑒 
 
From these two equations we obtain 
 

𝑄𝑄𝑒𝑒 =
𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍2
 

 
and 
 

𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑒𝑒𝑖𝑖
𝑍𝑍4

𝑍𝑍2
 

 
The instantaneous heat flux through the inside surface of the wall is 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑖𝑖
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (3.3) 

 
and the instantaneous heat flux through the outside surface is 
 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im�𝑄𝑄𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �
𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.4) 
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The inverse transmission matrix for a planar structure with 𝑛𝑛 layers is 
 

�𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� = �1 − 1 ℎ𝑖𝑖⁄
0 1

� � cosh 𝑀𝑀𝑛𝑛 −
sinh 𝑀𝑀𝑛𝑛

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh 𝑀𝑀𝑛𝑛 cosh 𝑀𝑀𝑛𝑛

� � cosh 𝑀𝑀𝑛𝑛−1 −
sinh 𝑀𝑀𝑛𝑛−1

𝑁𝑁𝑛𝑛
−𝑁𝑁𝑛𝑛 sinh 𝑀𝑀𝑛𝑛 cosh 𝑀𝑀𝑛𝑛

� ⋯ 

 

⋯ � cosh 𝑀𝑀2 −
sinh 𝑀𝑀2

𝑁𝑁2
−𝑁𝑁2 sinh 𝑀𝑀2 cosh 𝑀𝑀2

� � cosh 𝑀𝑀1 −
sinh 𝑀𝑀1

𝑁𝑁1
−𝑁𝑁1 sinh 𝑀𝑀1 cosh 𝑀𝑀1

� �1 − 1 ℎ𝑒𝑒⁄
0 1

�       (3.5) 

 
where the complex constants 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖 are defined by (2.10) and (2.11), respectively. 
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4 Net heat flux through the building envelope 
 
We now wish to determine the net heat flux 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡 in Figure 2 in response to sinusoidal variations in the 
sol-air temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡) and the environmental temperature 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡). 
 
 
Figure 2  Building envelope 

 
 
The contribution to 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) from the sol-air temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡) is given by (2.7): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (2.7) 

 
and the contribution to 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡 from the environmental temperature 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) is given by (3.3): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝑄𝑄𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im �𝐴𝐴𝑒𝑒𝑖𝑖
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.3) 

 
By virtue of the superposition principle, we can add the two contributions together to obtain the net heat 
flux. 
 
In the following sections we shall introduce some dynamic thermal parameters. The most important of 
these parameters are tabulated in Ref. [2] for different types of planar composite wall. Two parameters 
are of particular importance: the decrement factor and the thermal admittance. The first of these can be 
used to evaluate (2.7) and the second can be used to evaluate (3.3). Consequently, we can evaluate 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡. 
In addition, there is a third parameter, the surface factor, that can be used determine the effect of solar 
gain on the temperature in a building. We shall present worked examples to show how each dynamic 
thermal parameter is calculated. 
 
 
 
 
  

𝜃𝜃e𝑜𝑜(𝑡𝑡) 𝜃𝜃e𝑖𝑖(𝑡𝑡) 

Boundary layer 
 

Boundary layer 
 

Wall 
Outside 
  

Inside 
  

𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) 
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5 Periodic thermal transmittance 
 
We can rewrite (2.7) as: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = 𝐴𝐴𝑒𝑒𝑒𝑒Im�𝑋𝑋𝑐𝑐𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (5.1) 

 
where the complex constant 𝑋𝑋𝑐𝑐 is 
 

𝑋𝑋𝑐𝑐 =
1
𝑧𝑧2

      (5.2) 

 
The complex constant 𝑋𝑋𝑐𝑐 can be written in the modulus-argument (amplitude-phase) form: 
 

𝑋𝑋𝑐𝑐 = |𝑋𝑋𝑐𝑐|𝑒𝑒𝑗𝑗Arg(𝑋𝑋𝑐𝑐)      (5.3) 
 
where 
 

|𝑋𝑋𝑐𝑐| = �Re(𝑋𝑋𝑐𝑐)2 + Im(𝑋𝑋𝑐𝑐)2      (5.4) 
 
is the modulus or amplitude of 𝑋𝑋𝑐𝑐 and 
 

Arg(𝑋𝑋𝑐𝑐) = atan �
Im(𝑋𝑋𝑐𝑐)
Re(𝑋𝑋𝑐𝑐)�       (5.5) 

 
is the argument or phase of 𝑋𝑋𝑐𝑐. 
 
Substituting (5.3) into (5.1) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒Im�|𝑋𝑋𝑐𝑐|𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗+Arg(𝑋𝑋𝑐𝑐)]�      (5.6) 
 
The terms |𝑋𝑋𝑐𝑐| and Arg(𝑋𝑋𝑐𝑐) in (5.6) have special names. |𝑋𝑋𝑐𝑐| is known as the periodic thermal 
transmittance and is denoted by 𝑋𝑋. Arg(𝑋𝑋𝑐𝑐) is known as the periodic thermal transmittance time lag 
and is denoted by 𝜆𝜆. The parameter 𝜆𝜆 is a time lag, so it will be negative. In tables of dynamic thermal 
parameters 𝜆𝜆 is given as a positive number, so we must place a negative sign in front of it in (5.6). Thus   
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒Im�𝑋𝑋𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗−𝜆𝜆]� = 𝑋𝑋𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡 − 𝜆𝜆)      (5.7) 
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6 Example 1 
 
(a) For the composite wall with boundary layers in Ref. [1], determine the periodic thermal 
transmittance and the periodic thermal transmittance time lag. (b) The sol-air temperature is cyclic with 
a mean of 0°C and an amplitude of 5°C. The environmental temperature is constant at 0°C. Plot the sol-
air temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡) and the inside heat flux 𝑞𝑞𝑖𝑖(𝑡𝑡) against time. 
 
(a) For the composite wall in Ref. [1], the transmittance matrix is 
 

�
𝑧𝑧1 𝑧𝑧2
𝑧𝑧3 z4

� = �
(−6.31935 + 𝑗𝑗1.46011) (−4.58586 + 𝑗𝑗5.36354)
(−47.0447 − 𝑗𝑗15.6345) (−51.4265 + 𝑗𝑗16.7011)�       (6.1) 

 
and the inverse transmission matrix is 
 

�𝑍𝑍1 𝑍𝑍2
𝑍𝑍3 𝑍𝑍4

� = �
(−51.4321 + 𝑗𝑗16.6913) (4.58715 − 𝑗𝑗5.36282)
(47.0435 + 𝑗𝑗15.6448) (−6.31991 + 𝑗𝑗1.45887)�       (6.2) 

 
The complex constant 𝑋𝑋𝑐𝑐 [W m−2 K−1] required in the periodic thermal transmittance is defined by Eq. 
(5.2): 
 

𝑋𝑋𝑐𝑐 =
1
𝑧𝑧2

 

 
Substituting 𝑧𝑧2 from (6.1) gives 
 

𝑋𝑋𝑐𝑐 =
1

(−4.58586 + 𝑗𝑗5.36354) 

 

=
(−4.58586 − 𝑗𝑗5.36354)

(−4.58586 + 𝑗𝑗5.36354)(−4.58586 − 𝑗𝑗5.36354) 

 

=
−4.58586 − 𝑗𝑗5.36354

4.585862 − 𝑗𝑗25.363542 

 

=
−4.58586 − 𝑗𝑗5.36354

49.7977
 

 
= −0.09209 − 𝑗𝑗0.10771 

 
The complex constant 𝑋𝑋𝑐𝑐 can be represented in the complex plane as shown in Figure 3. The amplitude 
of 𝑋𝑋𝑐𝑐 is 
 

Amplitude = �Re2 + Im2 = �(−0.09209)2 + (−0.10771)2 = 0.14171 
 
The phase of a complex number is measured anticlockwise from the positive Real axis. We know the 
heat flux variation on the inside surface of the wall will lag the temperature variation on the outside 
surface, so the phase of the heat flux variation will be negative relative to the temperature variation. 
Measuring the phase in the clockwise (negative) direction from the positive Real axis gives 
 

Phase =  −2.2782 rad (= −130.5°) 
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Figure 3  Amplitude and phase of 𝑋𝑋𝑐𝑐 

 
 
We can now write 𝑋𝑋𝑐𝑐 as 
 

𝑋𝑋𝑐𝑐 = 0.14171[cos(−2.2782) + 𝑗𝑗 sin(−2.2782)] 
 

= 0.14171𝑒𝑒−𝑗𝑗2.2782 
 
Thus the amplitude 𝑋𝑋 is 0.14171 [W m−2 K−1] and the phase is −2.2782 rad and represents a time lag. 
In tables the periodic thermal transmittance time lag 𝜆𝜆 is given as a positive value, so it will be 
2.2782 rad. 
 
In terms of hours, the periodic thermal transmittance time lag 𝜆𝜆 is 
 

𝜆𝜆 =
24
2𝜋𝜋

× 2.2782 = 8.7021 hr (8 hr 42 min) 
 
The indoor heat flux is given by (5.7): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡 − 𝜆𝜆) 
 

= 0.14171 × 5 × sin(𝜔𝜔𝑡𝑡 − 𝜆𝜆) 
 

= 0.70855 sin(𝜔𝜔𝑡𝑡 − 𝜆𝜆) [W m−2] 
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(b) Figure 4 shows the sol-air temperature 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡) and the heat flux 𝑞𝑞𝑖𝑖(𝑡𝑡) against time. 𝐴𝐴𝑒𝑒𝑒𝑒 = 5°C is the 
amplitude of the sol-air temperature and 𝑞𝑞�𝑖𝑖 = 𝑋𝑋𝐴𝐴𝑒𝑒𝑒𝑒 = 0.70855 W m−2  is the amplitude of the heat 
flux. 
 
For thin structures with very little thermal capacity 𝜆𝜆 tends to zero and (5.7) becomes  
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡) = 𝑋𝑋𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) 
 
At any instant 𝑞𝑞𝑖𝑖(𝑡𝑡) is directly proportional to 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡), as in steady-state thermal conduction. It follows 
that the constant of proportionality 𝑋𝑋 must be equal to the steady thermal transmittance 𝑈𝑈. 
 
 
Figure 4  Illustration of the periodic thermal transmittance 
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7 Decrement factor 
 
The decrement factor is similar in concept to the periodic thermal transmittance. We can rewrite (2.7) 
as: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �
𝐴𝐴𝑒𝑒𝑒𝑒

𝑧𝑧2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = 𝐴𝐴𝑒𝑒𝑒𝑒Im�𝑋𝑋𝑐𝑐𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = 𝐴𝐴𝑒𝑒𝑒𝑒𝑈𝑈Im �

𝑋𝑋𝑐𝑐

𝑈𝑈
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (7.1) 

 
where 𝑈𝑈 is the steady thermal transmittance. The complex constant 𝑋𝑋𝑐𝑐 is just the same as that in the 
periodic thermal transmittance: 
 

𝑋𝑋𝑐𝑐 =
1
𝑧𝑧2

      (7.2) 

 
and we can write 𝑋𝑋𝑐𝑐 in modulus-argument form just as before: 
 

𝑋𝑋𝑐𝑐 = |𝑋𝑋𝑐𝑐|𝑒𝑒𝑗𝑗Arg(𝑋𝑋𝑐𝑐)      (7.3) 
 
where 
 

|𝑋𝑋𝑐𝑐| = �Re(𝑋𝑋𝑐𝑐)2 + Im(𝑋𝑋𝑐𝑐)2      (7.4) 
 
and 
 

Arg(𝑋𝑋𝑐𝑐) = atan �
Im(𝑋𝑋𝑐𝑐)
Re(𝑋𝑋𝑐𝑐)�       (7.5) 

 
Substituting (7.3) into (7.1) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒𝑈𝑈Im �
|𝑋𝑋𝑐𝑐|

𝑈𝑈
𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗+Arg(𝑋𝑋𝑐𝑐)]�       (7.6) 

 
The terms |𝑋𝑋𝑐𝑐|/𝑈𝑈 and Arg(𝑋𝑋𝑐𝑐) in (7.6) have special names. |𝑋𝑋𝑐𝑐|/𝑈𝑈 is known as the decrement factor 
and is denoted by 𝑓𝑓. Arg(𝑋𝑋𝑐𝑐) is known as the decrement factor time lag and is denoted by 𝜙𝜙. (Note that 
the decrement factor time lag 𝜙𝜙 is the same as the periodic thermal transmittance time lag 𝜆𝜆.)  
 
The parameter 𝜙𝜙 is a time lag (the peak in 𝑞𝑞𝑖𝑖(𝑡𝑡) lags the peak in 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡)), so 𝜙𝜙 should always be negative. 
In tables of dynamic thermal parameters, the decrement factor time lag is given as a positive number, 
so we must place a negative sign in front of it in (7.6). Thus 
  

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒𝑈𝑈Im�𝑓𝑓𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗−𝜙𝜙]� = 𝑈𝑈𝑓𝑓𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡 − 𝜙𝜙)      (7.7) 
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8 Example 2 
 
For the composite wall with boundary layers in Ref. [1], determine the decrement factor and the 
decrement factor time lag. 
 
We calculated the complex constant 𝑋𝑋𝑐𝑐 required in the decrement factor in Example 1: 
 

𝑋𝑋𝑐𝑐[W m−2K−1] = |𝑋𝑋𝑐𝑐|𝑒𝑒𝑗𝑗Arg(𝑋𝑋𝑐𝑐) = 0.14171𝑒𝑒−𝑗𝑗2.2782 
 
We calculated steady thermal transmittance required in the decrement factor in Ref. [1]: 
 

𝑈𝑈 = 0.58631 W m−2 K−1 
 
The decrement factor 𝑓𝑓 [ ] is therefore 
 

𝑓𝑓 =
|𝑋𝑋𝑐𝑐|

𝑈𝑈
=

0.14171
0.58631

= 0.24170 
 
The decrement factor time lag 𝜙𝜙 is the same as the periodic thermal transmittance time lag 𝜆𝜆. In terms 
of hours 𝜙𝜙 is 
 

𝜙𝜙 = 𝜆𝜆 = 8.7021 hr (8 hr 42 min) 
 
For thin structures with very little thermal capacity 𝜆𝜆 tends to zero and (7.7) becomes  
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑈𝑈𝑓𝑓𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡) = 𝑈𝑈𝑓𝑓𝜃𝜃𝑒𝑒𝑒𝑒(𝑡𝑡) 
 
At any instant 𝑞𝑞𝑖𝑖(𝑡𝑡) is directly proportional to 𝜃𝜃𝑒𝑒𝑜𝑜(𝑡𝑡), as in steady-state thermal conduction. It follows 
that the constant of proportionality 𝑈𝑈𝑓𝑓 must be equal to the steady thermal transmittance 𝑈𝑈 and 
consequently 𝑓𝑓 must be equal to 1. 
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9 Thermal admittance 
 
The instantaneous heat flux 𝑞𝑞𝑖𝑖(𝑡𝑡) at the inside of a composite wall due to a sinusoidally varying 
environmental temperature 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) with amplitude 𝐴𝐴𝑒𝑒𝑖𝑖 and angular frequency 𝜔𝜔 is given by (3.3): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑖𝑖
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.3) 

 
where 𝑍𝑍2 and 𝑍𝑍4 are elements of the inverse transmission matrix. We define the complex constant 𝑌𝑌𝑐𝑐 as  
 

𝑌𝑌𝑐𝑐 = −
𝑍𝑍4

𝑍𝑍2
      (9.1) 

 
The negative sign has the effect of subtracting 𝜋𝜋 radians from the phase of 𝑍𝑍4/𝑍𝑍2. For diurnal 
temperature variations, 𝜋𝜋 radians is equivalent to 12 hours. 
 
If we substitute 𝑌𝑌𝑐𝑐 rather than 𝑍𝑍4/𝑍𝑍2 into (3.3) then we will find that the phase lead of 𝑞𝑞𝑖𝑖(𝑡𝑡) in relation 
to 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) is reduced by 12 hours. The phase lead will become the time difference between the peak 
negative heat flux and the peak positive temperature, rather than the time difference between the peak 
positive heat flux and the peak positive temperature. Substituting 𝑌𝑌𝑐𝑐 rather than 𝑍𝑍4/𝑍𝑍2 into (3.3) appears 
logical because a positive environmental temperature is associated with a negative heat flux (a heat flux 
in the negative 𝑥𝑥 direction). 
 
The complex constant 𝑌𝑌𝑐𝑐 can be written in the modulus-argument form: 
 

𝑌𝑌𝑐𝑐 = |𝑌𝑌𝑐𝑐|𝑒𝑒𝑗𝑗Arg(𝑌𝑌𝑐𝑐)      (9.2) 
 
The terms |𝑌𝑌𝑐𝑐| and Arg(𝑌𝑌𝑐𝑐) in (9.2) have special names. |𝑌𝑌𝑐𝑐| is known as the thermal admittance and is 
denoted by 𝑌𝑌. Arg(𝑌𝑌𝑐𝑐) is known as the thermal admittance time lead and is denoted by 𝜑𝜑. Substituting 
(9.2) into (3.3) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝐴𝐴𝑒𝑒𝑖𝑖𝑌𝑌𝑐𝑐𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im�𝐴𝐴𝑒𝑒𝑖𝑖𝑌𝑌𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗+𝜑𝜑]� = 𝐴𝐴𝑒𝑒𝑖𝑖𝑌𝑌 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑)     (9.3) 
 
Note that this heat flux makes a negative contribution to the net heat flux 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) because the time lead 
is the time between the peak negative heat flux and the peak environmental temperature. 
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10  Example 3 
 
For the composite wall with boundary layers in Ref. [1], determine the thermal admittance and the 
thermal admittance time lead. 
 
The complex constant 𝑌𝑌𝑐𝑐 required in the thermal admittance is defined by (9.1): 
 

𝑌𝑌𝑐𝑐 = −
𝑍𝑍4

𝑍𝑍2
 

 
The elements of the inverse transmission matrix 𝑍𝑍2 and 𝑍𝑍4 were given in Example 1. Substituting gives 
 

𝑌𝑌𝑐𝑐 = −
(−6.31991 + 𝑗𝑗1.45887)
(4.58715 − 𝑗𝑗5.36282)  

 

= −
(−6.31991 + 𝑗𝑗1.45887)(4.58715 + 𝑗𝑗5.36282)
(4.58715 − 𝑗𝑗5.36282)(4.58715 + 𝑗𝑗5.36282)  

 

= −
−28.99037 − 𝑗𝑗33.89254 + 𝑗𝑗6.69205 + 𝑗𝑗27.82366

4.587152 + 5.362822  
 

= −
−36.81403 − 𝑗𝑗27.20049

49.80178
 

 
= 0.73921 + 𝑗𝑗0.54617 

 
= 0.91909[cos(0.63633) + 𝑗𝑗 sin(0.63633)] 

 
= 0.91909𝑒𝑒𝑗𝑗0.63633 

 
Thus the modulus |𝑌𝑌𝑐𝑐| is 0.91909 [W m−2 K−1] and the argument 𝜑𝜑 is 0.63633 rad. Note that 𝜑𝜑 is 
positive and represents a time lead. 
 
The admittance 𝑌𝑌 [W m−2 K−1] is the modulus of 𝑌𝑌𝑐𝑐 so 𝑌𝑌 is 0.91909 W m−2 K−1. 
 
In terms of hours, the thermal admittance time lead 𝜑𝜑 is 
 

𝜆𝜆 =
24
2𝜋𝜋

× 0.63633 = 2.4036 hr (2 hr 26 min) 
 
The peak heat flux into the wall occurs 2 hr 26 min before the peak environmental temperature. 
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11  Solar gain 
 

11.1 Heat flow model 
 
Solar radiation passing through windows will impinge on the inside surfaces of the walls. Some of the 
radiation will be absorbed and some will be reflected. The reflected radiation will impinge on other 
surfaces and, again, some will be absorbed and some will be reflected. Eventually, all of the solar 
radiation will be absorbed. 
 
The absorbed radiation will heat up the walls. Some of the heat will pass through the walls to the outside 
and some will pass into the air adjacent to the walls by natural convection. Ref. [3] recommends a 
simple model to estimate the heat flux into the building and contributing to the net heat flux 
𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) [W m−2]. 
 
We shall denote the radiative flux impinging on the wall by 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡)  [W m−2], the heat flux released to 
the air by 𝑞𝑞𝑖𝑖(𝑡𝑡) [W m−2], and the heat flux passing through the wall by 𝑞𝑞𝑜𝑜(𝑡𝑡) [W m−2], and we shall 
assume that the sizes of the fluxes 𝑞𝑞𝑖𝑖(𝑡𝑡), and 𝑞𝑞𝑜𝑜(𝑡𝑡) are inversely proportional the impedence to each 
flux. For 𝑞𝑞𝑜𝑜(𝑡𝑡) the impedence is equal to the impedence of the wall and boundary layers minus the 
impedence of the inner boundary layer, 𝑍𝑍−𝑍𝑍𝑠𝑠𝑖𝑖. For 𝑞𝑞𝑖𝑖(𝑡𝑡) the impedence is due to the inner boundary 
layer, 𝑍𝑍𝑠𝑠𝑖𝑖. Thus 
 

𝑞𝑞𝑒𝑒(𝑡𝑡)
𝑞𝑞𝑖𝑖(𝑡𝑡) =

𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) − 𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑞𝑞𝑖𝑖(𝑡𝑡) =

𝑍𝑍𝑠𝑠𝑖𝑖

𝑍𝑍 − 𝑍𝑍𝑠𝑠𝑖𝑖
 

 
We can rearrange this equation as follows: 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = �1 −
𝑍𝑍𝑠𝑠𝑖𝑖

𝑍𝑍
� 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) 

 
The impedence is the reciprocal of the admittance. For the wall the admittance is 𝑌𝑌𝑐𝑐 if we ignore the 
fact that 𝑌𝑌𝑐𝑐 includes the inner boundary. For the inner boundary layer the impedence is simply the 
thermal resistance of the boundary layer 𝑅𝑅𝑠𝑠𝑖𝑖 = 1/h𝑖𝑖. Thus, 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = (1 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑌𝑌𝑐𝑐)𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡)      (11.1) 
 

11.2 Surface factor 
 
The complex constant in (11.1) is denoted by 𝐹𝐹𝑐𝑐 [ ]: 
 

𝐹𝐹𝑐𝑐 = 1 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑌𝑌𝑐𝑐       (11.2) 
 
where 𝑅𝑅𝑠𝑠𝑖𝑖 [m2 K W−1] is the convective surface resistance of the inside surface. 
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The complex constant 𝐹𝐹𝑐𝑐 can be written in the modulus-argument form: 
 

𝐹𝐹𝑐𝑐 = |𝐹𝐹𝑐𝑐|𝑒𝑒𝑗𝑗Arg(𝐹𝐹𝑐𝑐)      (11.3) 
 
where 
 

|𝐹𝐹𝑐𝑐| = �Re(𝐹𝐹𝑐𝑐)2 + Im(𝐹𝐹𝑐𝑐)2      (11.4) 
 
is the modulus or amplitude of 𝐹𝐹𝑐𝑐 and 
 

Arg(𝐹𝐹𝑐𝑐) = atan �
Im(𝐹𝐹𝑐𝑐)
Re(𝐹𝐹𝑐𝑐)�       (11.5) 

 
The terms |𝐹𝐹𝑐𝑐| and Arg(𝐹𝐹𝑐𝑐) in (11.3) have special names. |𝐹𝐹𝑐𝑐| is known as the surface factor and is 
denoted by 𝐹𝐹. Arg(𝐹𝐹𝑐𝑐) is known as the surface factor time lag and is denoted by 𝜓𝜓. 
 
The parameter 𝜓𝜓 is a time lag (the peak in 𝑞𝑞𝑖𝑖(𝑡𝑡) lags the peak in 𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡)) so 𝜓𝜓 should always be negative. 
In tables of dynamic thermall parmeters, the surface factor time lag is given as a positive number, so 
we must place a negative sign in front of it in (11.3). Thus 
 

𝐹𝐹𝑐𝑐[ ] = 𝐹𝐹𝑒𝑒−𝑗𝑗𝑗𝑗      (11.6) 
 
The time-varying solar gain is 
 

𝑞𝑞𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝐴𝐴𝑠𝑠𝑠𝑠 sin(𝜔𝜔𝑡𝑡) = Im�𝐴𝐴𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (11.7) 
 
where 𝐴𝐴𝑠𝑠𝑠𝑠 [W m−2] is the amplitude of the solar-gain. The heat flux 𝑞𝑞𝑖𝑖(𝑡𝑡) [W m−2] is  
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im�𝐹𝐹𝑐𝑐𝐴𝐴𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = Im�𝐹𝐹𝑒𝑒−𝑗𝑗𝑗𝑗𝐴𝐴𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� = 𝐴𝐴𝑠𝑠𝑠𝑠𝐹𝐹 sin(𝜔𝜔𝑡𝑡 − 𝜓𝜓)      (11.8) 
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12  Example 4 
 
For the composite wall with boundary layers in Ref. [1], calculate the surface factor 𝐹𝐹 and the associated 
time lag 𝜓𝜓. 
 
The complex constant 𝐹𝐹𝑐𝑐 [ ] is defined by Eqn. (11.2): 
 

𝐹𝐹𝑐𝑐 = 1 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑌𝑌𝑐𝑐 
 
where 𝑅𝑅𝑠𝑠𝑖𝑖 [m2 K W−1] is the convective surface resistance of the inside surface. 
 
For the brick wall the convection heat transfer coefficient of the inside surface h𝑖𝑖 is 7.7 W m−2 K−1, so 
 

𝑅𝑅𝑠𝑠𝑖𝑖 =
1
ℎ𝑖𝑖

=
1

7.7
= 0.12987 m2 K W−1  

 
and the complex constant 𝐹𝐹𝑐𝑐 is 
 

𝐹𝐹𝑐𝑐 = 1 − 0.12987(0.73921 + 𝑗𝑗0.54617) 
 

= 1 − 0.096001 − 𝑗𝑗0.070931 
 

= 0.903999 − 𝑗𝑗0.070931 
 

= 0.9068𝑒𝑒−𝑗𝑗0.07830 
 
The surface factor 𝐹𝐹 [ ] is the modulus of 𝐹𝐹𝑐𝑐: 
 

𝐹𝐹 = |𝐹𝐹𝑐𝑐| = 0.9068 
 
The time lag 𝜓𝜓 [hr] of 𝐹𝐹𝑐𝑐 is 24 hr/2𝜋𝜋 rad times the argument [rad] of 𝐹𝐹𝑐𝑐: 
 

𝜓𝜓 =
24
2𝜋𝜋

× 0.07830 = 0.2991 hr (18 min) 
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13  Example 5 
 
The composite wall in Example 1 is subjected to the sinusoidal thermal conditions shown in Table 1. 
Use the dynamic thermal parameters calculated in Examples 2, 3 and 4 to determine the time varying 
net heat flux from the indoor side to the occupied space. 
 
 
Table 1  Thermal conditions applied to the composite wall with boundary layers 

Thermal condition Mean Amplitude Time of +ve peak 
Sol-air temperature 0°C 9°C 15:00 hr 
Environmental temperature 0°C 4°C 12:00 hr 
Solar gain 0 Wm−2 6 Wm−2 14:00 hr 

 
 
Table 2 gives the dynamic thermal parameters calculated in Examples 2, 3 and 4. 
 
 
Table 2  Dynamic thermal parameters for the composite wall with boundary layers 

Decrement 
factor 

Decrement 
factor time lag 

Thermal 
admittance 

Thermal admittance 
time lead 

Surface 
factor 

Surface factor 
time lag 

𝑓𝑓 [ ] 𝜙𝜙 [hr] 𝑌𝑌 [W m−2 K−1] 𝜆𝜆 [hr] 𝐹𝐹 [ ] 𝜑𝜑 [hr] 
0.24170 8.7021 0.91909 2.4036 0.9068 0.2991 

 
 
From Example 2, the steady thermal transmittance 𝑈𝑈 is 0.58631 W m−2 K−1. 
 
 
Decrement factor and decrement factor time lag 
 
The heat flux on the indoor side due to the sinusoidal variation in sol-air temperature is given by 
equation (7.7): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑒𝑒𝑈𝑈Im�𝑓𝑓𝑒𝑒𝑗𝑗[𝑗𝑗𝑗𝑗−0.75𝑖𝑖−𝜙𝜙]� = 𝑈𝑈𝑓𝑓𝐴𝐴𝑒𝑒𝑒𝑒 sin(𝜔𝜔𝑡𝑡 − 0.75𝜋𝜋 − 𝜙𝜙) 
 
where 𝐴𝐴𝑒𝑒𝑜𝑜 is the amplitude of the sol-air temperature, 𝑈𝑈 is the steady thermal transmittance of the wall, 
𝑓𝑓 is the decrement factor, and 𝜙𝜙 is the decrement factor time lag in radians. The peak in sol-air 
temperature occurs at 15:00 hr, so we have subtracted (15:00 − 6:00)×2𝜋𝜋/24 from the argument of 
the sine function. The sol-air temperature variation is diurnal so the angular frequency 𝜔𝜔 is 2𝜋𝜋/86400 
rad s−1. The decrement factor time lag 𝜙𝜙 expressed in radians is 
 

𝜙𝜙 = 8.7021 ×
2𝜋𝜋
24

= 2.2782 rad 
 
Substituting the values of the parameters into (7.7) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 0.58631 × 0.24170 × 9 sin �
2𝜋𝜋𝑡𝑡

86400
− 0.75𝜋𝜋 − 2.2782� 

 
= 1.2754 sin(7.2722 × 10−5𝑡𝑡 − 0.75𝜋𝜋 − 2.2782)      (13.1) 
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Thermal admittance and thermal admittance time lead 
 
The heat flux on the indoor side due to the sinusoidal variation in environmental temperature is given 
by equation (9.3): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑌𝑌 sin(𝜔𝜔𝑡𝑡 − 0.5𝜋𝜋 + 𝜑𝜑) 
 
where 𝐴𝐴𝑒𝑒𝑖𝑖 is the amplitude of the environmental temperature, 𝑌𝑌 is the thermal admittance, and 𝜑𝜑 is the 
thermal admittance time lead in radians. The peak in environmental temperature occurs at 12:00 hr, so 
we have subtracted (12:00 − 6:00)×2𝜋𝜋/24 from the argument of the sine function. The thermal 
admittance time lead 𝜑𝜑 expressed in radians is 
 

𝜑𝜑 = 2.4036 ×
2𝜋𝜋
24

= 0.62926 rad 
 
Substituting the values of the parameters into (9.3) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 4 × 0.91909 sin �
2𝜋𝜋𝑡𝑡

86400
− 0.5𝜋𝜋 + 0.62926� 

 
= 3.6764 sin(7.2722 × 10−5𝑡𝑡 − 0.5𝜋𝜋 + 0.62926)      (13.2) 

 
Note that this heat flux makes a negative contribution to the net heat flux 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) because the time lead 
is the time between the peak negative heat flux and the peak environmental temperature. 
 
 
Surface factor and surface factor time lag 
 
The heat flux on the indoor side due to the sinusoidal variation in the solar gain is given by equation 
(11.8): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑠𝑠𝑠𝑠𝐹𝐹 sin(𝜔𝜔𝑡𝑡 − 2𝜋𝜋/3 − 𝜓𝜓) 
 
where 𝐴𝐴𝑠𝑠𝑠𝑠 [W m−2] is the amplitude of the solar-gain, 𝐹𝐹 is the surface factor, and 𝜓𝜓 is the surface factor 
time lag. The peak in solar gain occurs at 14:00 hr, so we have subtracted (14:00 − 6:00)×2𝜋𝜋/24 
from the argument of the sine function. The surface factor time lag 𝜓𝜓 expressed in radians is 
 

𝜑𝜑 = 0.2991 ×
2𝜋𝜋
24

= 0.07830 rad 
 
Substituting the values of the parameters into (11.8) gives 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 6 × 0.9068 sin �
2𝜋𝜋𝑡𝑡

86400
− 2𝜋𝜋/3 − 0.07830� 

 
= 5.4408 sin(7.2722 × 10−5𝑡𝑡 − 2𝜋𝜋/3 − 0.07830)      (13.3) 
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Net heat flux 
 
The net heat flux 𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) from the indoor side of the wall to the occupied space is obtained by summing 
(13.1), (13.2) and (13.3), remembering that (13.2) makes a negative contribution: 
 

𝑞𝑞𝑖𝑖,𝑛𝑛𝑒𝑒𝑗𝑗(𝑡𝑡) = 1.2754 sin(7.2722 × 10−5𝑡𝑡 − 0.75𝜋𝜋 − 2.2782) 
 

−3.6764 sin(7.2722 × 10−5𝑡𝑡 − 0.5𝜋𝜋 + 0.62926) 
 

+5.4408 sin(7.2722 × 10−5𝑡𝑡 − 2𝜋𝜋/3 − 0.07830)      (13.4) 
 
Figure 5 shows the sinusoidal variation of the sol-air temperature and the environmental temperature. 
Figure 6 shows the heat fluxes generated on the indoor side of the wall by the sol-air temperature, the 
environmental temperature and the solar gain. 
 
The positive peak in the sol-air temperature occurs at 15:00 hr. In Figure 6 we can see that the peak in 
the heat flux due to the sol-air temperature occurs 8 hr 42 min later. 
 
The positive peak in the environmental temperature occurs at 12:00 hr. In Figure 6 we can see that the 
negative peak in the heat flux due to the environmental temperature occurs 2 hr 24 min earlier. 
 
The positive peak in the solar gain occurs at 14:00 hr. The positive peak in the heat flux due to the 
solar gain occurs 18 min later. 
 
Finally, we can see that the positive peak in the net heat flux occurs at 17 hr 48 min. 
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Figure 5  Sol-air and environmental temperatures 

   
 
 
Figure 6  Heat fluxes from the indoor side of the wall to the occupied space 
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14  Heat capacity per unit area 
 
The instantaneous heat flux through the inside surface of a wall 𝑞𝑞𝑖𝑖(𝑡𝑡) due to an oscillating environmental 
temperature is 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) given by (3.3): 
 

𝑞𝑞𝑖𝑖(𝑡𝑡) = Im �𝐴𝐴𝑒𝑒𝑖𝑖
𝑍𝑍4

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�      (3.3) 

 
The instantaneous heat flux through the outside surface 𝑞𝑞𝑜𝑜(𝑡𝑡) due to an oscillating environmental 
temperature is 𝜃𝜃𝑒𝑒𝑖𝑖(𝑡𝑡) given by (3.4): 
 

𝑞𝑞𝑒𝑒(𝑡𝑡) = Im �
𝐴𝐴𝑒𝑒𝑖𝑖

𝑍𝑍2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�       (3.4) 

 
Subtracting the complex constants in (3.3) and (3.4) from each other and taking the modulus provides 
a measure of the thermal storage capacity of the wall per unit area. The heat capacity per unit area 
𝜒𝜒 [J K−1 m−2] is defined by 
 

𝜒𝜒 =
𝑃𝑃

2𝜋𝜋 �
𝑍𝑍4 − 1

𝑍𝑍2
�       (14.1) 

 
where 𝑃𝑃 [s] is the period of the temperature cycle. 
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15  Example 6 
 
For the composite wall with boundary layers in Example 1, calculate the heat capacity per unit area 𝜒𝜒. 
 
The heat capacity per unit area 𝜒𝜒 is given by (14.1): 
 

𝜒𝜒 =
𝑃𝑃

2𝜋𝜋 �
𝑍𝑍4 − 1

𝑍𝑍2
� 

 

=
86400

2𝜋𝜋 �
−6.31991 + 𝑗𝑗1.45887 − 1

4.58715 − 𝑗𝑗5.36282 � 

 

=
86400

2𝜋𝜋 �
−7.31991 + 𝑗𝑗1.45887
4.58715 − 𝑗𝑗5.36282 � 

 

=
86400

2𝜋𝜋
�
(−7.31991 + 𝑗𝑗1.45887)(4.58715 + 𝑗𝑗5.36282)
(4.58715 − 𝑗𝑗5.36282)(4.58715 + 𝑗𝑗5.36282) � 

 

=
86400

2𝜋𝜋 �
−33.5775 − 𝑗𝑗39.2554 + 𝑗𝑗6.69206 − 7.82366

4.587152 + 5.362822 � 
 

=
86400

2𝜋𝜋 �
−41.4012 − 𝑗𝑗32.5633

49.8018 � 
 

=
86400

2𝜋𝜋
|−0.83132 − 𝑗𝑗0.65386| 

 

=
86400

2𝜋𝜋 �1.05765𝑒𝑒−𝑗𝑗0.90164� 
 

=
86400

2𝜋𝜋
× 1.05765 = 14544 J K−1 m−2 

 
= 14.544 kJ K−1 m−2 
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16  Dynamic thermal parameters of typical wall constructions 
 
This series of theory guides has explained the admittance method and shown how it is used to calculate 
some important dynamic thermal parameters of a planar composite wall. The decrement factor and its 
time lag, the thermal admittance and its time lead, and the surface factor and its time lag are required in 
the CIBSE cyclic model, which calculates the heat flows into and out of an occupied space during the 
course of a day. CIBSE have tabulated the values of the dynamic thermal parameters for different types 
of walls, roofs, ceilings and floors – see Ref. [2]. BSI also provide values – see Ref. [3]. If representative 
values of the parameters cannot be found in tables then they can be calculated using the methods in 
these theory guides. 
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