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1 Control volume analysis

The energy of a mass of fluid consists of the sum of its internal energy, kinetic energy and potential
energy. To derive the energy equation, we begin with the first law of thermodynamics. When applied
to the control volume in Figure 1, the first law can be written:

Rate of increase Rate of flow of Rate of flow of
of energy in CV energy into CV energy out of CV

Rate of heat Rate at which
transfer into CV surface and body
by conduction forces do work
on CV

)

We shall denote the internal energy per unit mass of fluid by e [J kg=1]. The kinetic energy per unit
mass K is

u? +v? +w?

-1
K= 5 Ukg™]

We shall denote the sum of these components by ¢ [] kg—1], i.e.

u? +v? + w? .
E=et——0— [J kg™1]
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Figure 1 Infinitesimal control volume for Cartesian coordinates
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2 Transient and convection terms

The amount of energy in the CV is equal to the energy per unit mass ¢ [J kg—1] times the mass of fluid
in the CV, p dx dy dz [kg]; that is, pe dx dy dz []]. The rate of increase of energy with time, the left-
hand term in Eq. (1), is therefore

d(pe)
at

dxdydz [Js7'] (2)

Energy may enter or leave through any of the faces P to U in Figure 1, transported by the mass flow
through the faces.

The rate of flow of energy through the face perpendicular to the x direction whose centre is P is
€ [J kg—1] times the mass flow through the face, pu dy dz [kg s—1]; that is,

pusdydz [Js71]

The rate of flow of energy through the opposite face whose centre is Q is

<pus + a(gug) dx) dydz [Js™1]

X

and so the net rate of flow of energy out of the CV through the faces with centres P and Q is

d(pue)
pue + o dx |dy dz — puesdy dz

_ d(pue)
T ox

dxdydz [Js71]

The rate of flow of energy x through the face perpendicular to the y direction whose centre is R is
€ [J kg—1] times the mass flow through the face, pv dx dz [kg s—1]; that is,

pvedxdz [Js71]

The rate of flow of energy through the opposite face whose centre is S is

and so the net rate of flow out of the CV through the faces with centres R and S is

d(pve)
pve + 3y dy |dx dz — pve dx dz

= a(gvs) dxdydz [Js™Y]



AKINSON SCIENCE LIMITED THEORY GUIDE

Similarly, the net rate of flow out of the CV through the faces normal to the z axis with centres T and
Uis

d(pwe)
0z

dxdydz [Js™}]

Adding together the terms for the three pairs of faces, the sum of the net rates of outflow of energy is

d(pue) d(pve) = d(pwe) _
PP 3 +t— dxdydz [Js7'] (3)
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3 Heat transfer term

The third term on the right of (1) represents the heat transfer into the CV by conduction. We shall denote
the heat flux per unit area by q [J m~2 s—1]. ¢ has components gz, gy, and g, [J m~2 s~1] in the x, y and
z directions, respectively. Heat transfer is considered positive if it is in the positive coordinate direction.

Referring to Figure 2, the rate of heat flow through the face perpendicular to the x direction whose
centre is P is g [] m~2 s~1] times the area of the face, dy dz [m?]; that is,

axdydz [Js7!]
The rate of heat flow through the opposite face whose centre is Q is

dq _
(qx + a—xxdx) dydz [Js™1]

and so the net rate of heat flow our of the CV through the faces with centres P and Q is

0qx
qx+adx dydz—q,dydz

_ 04 1
—gdxdydz [Js7]

Figure 2 Heat flow in the x direction

'y !
y i
LY 1
dy oT i
P | 0
qx dy dz Lod ' g--—P(qx-i-%dx)dydz
X y \ *
ol \\\
[ ] R \\\\
z dz
dx




AKINSON SCIENCE LIMITED THEORY GUIDE

Similarly, the net rate of heat flow out of the CV through the faces normal to the y axis with centres R
and S is

d
ai;dx dydz [Js™1]

and the net rate of heat flow out of the CV through the faces normal to the z axis with centres T and U
is

d
%dx dydz [Js™1]

The rate of heat transfer into the CV, the third term on the right of (1), is therefore

dqx 0qy 0q, 1
—<¥+W+E dxdydz []S ]

The heat flux components gx, g, g, are

or  __or T
ox T ay’ 1z =%,

where k [W m~1 K-1] is the thermal conductivity of the fluid. We can now write the heat flow into the
CV, the third term on the right of (1), in terms of temperature:

[%(kg_:>+%(kg—§)+%(kg—2)]dxdydz Us™1 @

10
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4 Pressure work term

The rate at which pressure does work on one side of a flat moving fluid surface is the product of the
pressure, the area of the surface, and the component of velocity normal to the surface. By definition, a
positive pressure acts inward. Referring to Figure 3, the rate at which work is done on the fluid that

THEORY GUIDE

enters the CV through the face perpendicular to the x direction whose centre is P is

The rate at which work is done on the fluid that leaves the CV through the face perpendicular to the x

direction whose centre is Q is

after neglecting the term in (dx)?. The net pressure work associated with the two faces normal to the x

direction is

pudy dz

_0(pw)
d0x

Ds™]

dx dy dz

Figure 3 Pressure work done in the x direction
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Similarly, the net pressure work associated with the two faces normal to the y direction is

_0(pv)
dy

dxdydz [Js71]

and the net pressure work associated with the two faces normal to the z direction is

_0(pw)
dz

dxdydz []s71]

After adding together the terms for the three pairs of faces, the net pressure work done on the fluid in
the CV, the fourth term on the right of (1), is

_[2Gw) | 0(pv)  9(pw)

-1
e 3y e dxdydz [Js™'] (5)

12
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5 Viscous stress terms

If a fluid element changes size or shape with time, viscosity creates further stresses that may act normal
to a surface (a viscous normal stress) or tangentially (a viscous shear stress). We define the different
components of viscous normal stress and viscous shear stress as shown in Figure 4. The first subscript
of the symbol o represents the direction of the stress and the second subscript represents the direction
of the surface normal.

Figure 4 Viscous normal stresses and shear stresses in Cartesian coordinates
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5.1 Work done by normal stresses

By convention, a normal stress is positive if it acts outwards from the CV (in contrast with p, which is
positive inwards). The rate of work done by the normal stresses oxx, g,y and g, on the fluid in the CV
can be found in the same way as for p, remembering the change of sign. Thus the rate of work done by
the normal stresses is

0 (0, Uh) N a(ayyv) N d(o,,w)
d0x dy dz

dxdydz [Js™1] (6)

13
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5.2 Work done by shear stresses

By convention, the shear stresses are taken as positive on the faces farthest from the origin. Thus a shear
stress oxy acts in the positive x direction on the visible (upper) face perpendicular to the y axis and a
corresponding shear stress acts in the negative x direction on the invisible (lower) face perpendicular to

the y axis.

Referring to Figure 4, the shear stress acting in the x direction on the lower face normal to the y direction
is —0«xy and the rate at which work is done by this stress is

—oyyudxdz [Js7]

The shear force acting in the x direction on the upper face normal to the y direction is

do
<ny + G_;y dy) dxdz [N]

Oxy 00yy 0u 5
d —(d dxd
3y YT, ay( y)*|dx dz

ou 0
= |oxyu + axy@dy +u

d
= <axyu + %d}/) dxdz [Js™1]

after neglecting the term in (dy)?®. The net work done by the shear stress oy on the two faces normal to
the y direction is

9(oxyu)

-1
3y dxdydz [Js™']

There is also a shear stress a,, on these two faces, and the net work done by this shear stress is

0 (Uzyw)

3y dxdydz [Js71]

The net work done by shear stresses on the two faces normal to the y direction is therefore

9(oxyu) n d(ozyw)

-1
3y 3y dxdydz [Js™']

14
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Similarly, the net work done by shear stresses on the two faces normal to the x direction is

[a (Jyxv) + 9(0xW)

-1
9% 9% ]dxdydz Js™]

and the net work done by shear stresses on the two faces normal to the z direction is

dxdydz [Js71]

d(o,,u) N a(ayzv)
0z 0z

The net work done by shear stresses on the fluid in the CV, is therefore

a(axyu) N a(azyw) N a(ayxv) N 0(a4,W) 4 d(oyu) N a(ayzv)
dy dy dx dx dz dz

dxdydz [Js™] (7)

15
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6 Body force terms

The simplest example of a body force is the gravitational force. The fluid in the CV is subject to a
gravitational force equal to the mass of the fluid p dx dy dz times the acceleration due to gravity
g [ms-1]; that is, p g dx dy dz [kg m s—1]. A body force is a vector, so in general it has three
components, fx, fy, f- per unit mass [m s—1]. The body forces acting in the x, y and z coordinate
directions are, respectively,

pfxdxdydz, pf,dxdydz, pf,dxdydz

The rate of work done by the body forces on the fluid in the CV is simply work = force X velocity;
that s,

(ufx +vf, + sz)p dxdydz (8)

17
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7 Energy equation in terms of stress

Substituting the terms (2), (3), (4), (5), (6), (7) and (8) into Eq. (1) and dividing by dx dy dz gives the
energy equation:

00e) _ _ [a(pua L 9ve) | a(pwe>]

at 0x dy 0z
+[6 (kaT)+ d (kaT)+ d (kaT)]
dx\ 0dx/ dy\ dy/ 0z\ 0z
d d 0
_|2Gw) | 0(pv)  9(pw)
d0x dy 0z

N (0, U) N a(ayyv) N d(o,,w)
d0x dy dz

N [6 (nyu) N a(azyw) N a(ayxv) N 0(0,,W) N 0(0,,1) N a(ayzv)
dy dy dx dx 0z 0z

+pluf +vfy +wf,] [Jm3s7] (9)
where the energy per unit mass ¢ [J kg—1] is

u? +v? + w? L
£=e+K=e+f [ kg™]

19
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8 Equation for internal energy

We now have an equation for the internal and kinetic energy in a three-dimensional, unsteady,
compressible fluid flow. To obtain an equation for the internal energy e alone, we must subtract out the
kinetic energy K terms

a(pK)+0(puK)+0(va)+6(pr)
at dx dy 0z

from the energy equation.
In Ref. [1] we derived the conservation equation for K in Cartesian coordinates:

a(pK)+0(puK)+0(va)+6(pr)
at dx dy 0z

00,y 00y, 00y,
Uy T dy az]

pufy + pvfy, + pwf, [Jm™3s7']  (10)

Subtracting (10) from (9) gives

d(pe) _ [9(pue) +6(pve) +6(pwe)
ot ox dy 0z

+[6 <k6T>+ a (kaT)+ a (kaT)]
dx\ 0dx/ dy\ dy/ 0z\ 0z

d(pu) 9d(pv)  I(pw) dp dp  Op
_[ ox * dy * 0z ]+[u—+

where 0 is the viscous dissipation term.

This equation simplifies to

d(pe) 4 d(pue) + d(pve) 4 d(pwe)

at 0x dy 0z
_ [6 (kaT)+ d (kaT)+ d (kaT)]
“lox\"ax) ay\ ay) az\ oz
6u+6v+aw + 6 11)
P [ax dy az] (

21
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9 Viscous dissipation term

The viscous dissipation term in (11) is

0= 0(0, ) N a(ayyv) N d(o,,w)
0x dy 0z

N [6 (nyu) N a(azyw) N a(ayxv) N 0(0,,W) N 0(0,,u) N a(ayzv)
dy dy dx dx 0z 0z

00yy  00yxy 00y,
_”[ax + dy + OZ]_

00y 4 dayy 4 day, . 00, 00y + do,,
dx dy 0z d0x dy 0z

This equation simplifies to

ou ov ow
0= [Jxxa+ O'yya-}‘ O'ZZE]
du adw dv aw du Jdv 3 1
+ ny@+ O'Zy@-}- nya-}_ azxa+ sz&*‘ JyZ& [m™—>s™] (12)
In Cartesian coordinates the stress terms are
_ 6u+1(0u 0v+6w>
T = 2l ox "9y ' 9z
_ v 4 (au v BW)
Oy =G, T M ox Tay T a2
_ 6w+/1<6u av+6w>
02z = M, " \ox T ay T oz
Ju OJv
Oxy = Oyx = U (E a)

Oyz = 0zy = U

Substituting the stress equations into (12) gives

oun? o2 own 2
9:2“(5) ”ﬂ(@) “”(5)

N (6u+6v)2+ <6u+6W)2+ (6v+6W)2
K dy O0x K dz Ox H dz dy

Ju Ov Jw
+2 (

2
—+—+—= 13
6x+ay+az> (13)

23
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Substituting (13) into (11) gives the equation for internal energy alone in Cartesian coordinates in terms
of velocity:

0 d 0 0
(pe) N (pue) 4 (pve) N (pwe)
at d0x dy 0z

_ [6 (kaT)+ d (kaT)+ 0 (kaT)]

“lox\"ax)  ay\ ay) az\ oz
6u+0v+aw

p[ax dy az]

van(2) e aun(®) vau(2)
K dx K dy # 0z

N (0u N 617)2 N (au N OW)Z N (017 4 OW)Z
K dy Ox K dz Ox # 0z

+2 (6“ L aW)Z (14)
dx 0dy 0z

24
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10 Enthalpy equation

The enthalpy per unit mass h is defined by

h=e+B
p

To obtain the conservation equation for h, we need to add

0(p) a(ouk) a(evh) 2(ewh) ap op) o) awp)
TR e ayp R P Tt oy oz

to both sides of (14). This gives

a(ph) d(puh) a(pvh) d(pwh
(p)+ (pu)Jr (pV)+ (pwh)
at dx dy 0z

_ [6 (kaT)+ d (kaT)+ d (kaT)]
“lox\"ax) ay\ ay) az\ oz

N (0u N c’)v)z N (au N 0W)2 N (017 4 0W)
K dy Ox K dz Ox #

ou 6v+6W)2 [
dy 0z Jm

2 (5o + s (15)

which is the conservation equation for the enthalpy h in terms of temperature and velocity for a three-
dimensional, unsteady, compressible fluid flow.
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