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1 Scalar conservation equation in Cartesian coordinates 
 

1.1 Control volume analysis 
 
The rate of change of any scalar property 𝛷𝛷 in a control volume is equal to the net rate at which the 
scalar property enters the control volume by convection, plus the net rate at which the scalar property 
enters the control volume by diffusion, plus the rate of creation or destruction of the scalar property by 
an external source. The processes are set out in (1.1). 
 
 

 
 
The mass fraction of a scalar property in a mixture is the mass of the property per unit mass of mixture. 
We shall denote the mass fraction of 𝛷𝛷 by 𝜙𝜙 [kg 𝛷𝛷 kg−1 mixture]. 
 
 
 
 
  

Rate of increase 
of 𝛷𝛷 in CV = 

Net rate of flow 
of 𝛷𝛷 into CV by 
convection 

+ 
Net rate of flow 
of 𝛷𝛷 into CV by 
diffusion 

+ 
Rate of creation 
or destruction of 
𝛷𝛷 in CV 

(1.1) 
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1.2 Transient and convection terms 
 
Figure 1 shows an infinitesimal rectangular control volume (CV) through which a fluid mixture 
containing a scalar 𝛷𝛷 is flowing. The mass of scalar 𝛷𝛷 in the CV is equal to the mass fraction 
𝜙𝜙 [kg 𝛷𝛷 kg−1] times the mass of mixture in the CV, 𝜌𝜌 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [kg]; that is, 𝜌𝜌𝜙𝜙 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [kg 𝛷𝛷]. Note 
that kg 𝛷𝛷 is taken to mean kg of scalar 𝛷𝛷 and kg alone is taken to mean kg of mixture. The rate of 
increase of scalar 𝛷𝛷 with time, the left-hand term in (1.1), is therefore 
 

𝜕𝜕(𝜌𝜌𝜙𝜙)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1]      (1.2) 
 
 
 
Figure 1  Infinitesimal control volume for Cartesian coordinates 

 
 
 
 
 
  

𝑃𝑃 𝑄𝑄 

𝑅𝑅 

𝑆𝑆 

𝑇𝑇 

𝑈𝑈 

𝑑𝑑𝑥𝑥 

𝑑𝑑𝑧𝑧 

𝑑𝑑𝑦𝑦 

�𝜌𝜌𝑢𝑢𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥� 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 

�𝜌𝜌𝜌𝜌𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 

�𝜌𝜌𝜌𝜌𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 

(𝜌𝜌𝑢𝑢𝜙𝜙)𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 

(𝜌𝜌𝜌𝜌𝜙𝜙)𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 

(𝜌𝜌𝜌𝜌𝜙𝜙)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 

𝑧𝑧 

𝑦𝑦 

𝑥𝑥 
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The scalar may enter or leave through any of the faces 𝑃𝑃 to 𝑈𝑈 in Figure 1, transported by the mass flow 
of mixture through the faces. The rate of flow of scalar 𝛷𝛷 through the face perpendicular to the 
𝑥𝑥 direction whose centre is 𝑃𝑃 is 𝜙𝜙 [kg 𝛷𝛷 kg−1] times the mass flow of mixture through the face, 
𝜌𝜌𝑢𝑢 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [kg s−1]; that is, 
 

𝜌𝜌𝑢𝑢𝜙𝜙 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of flow of scalar 𝛷𝛷 through the opposite face whose centre is 𝑄𝑄 is 
 

�𝜌𝜌𝑢𝑢𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
and so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝜌𝜌𝑢𝑢𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 − 𝜌𝜌𝑢𝑢𝜙𝜙 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 

 

=
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of flow of scalar 𝛷𝛷 through the face perpendicular to the 𝑦𝑦 direction whose centre is 𝑅𝑅 is 
𝜙𝜙 [kg 𝛷𝛷 kg−1] times the mass flow of mixture through the face, 𝜌𝜌𝜌𝜌 𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 [kg s−1]; that is, 
 

𝜌𝜌𝜌𝜌𝜙𝜙 𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of flow of scalar 𝛷𝛷 through the opposite face whose centre is 𝑆𝑆 is 
 

�𝜌𝜌𝜌𝜌𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦�𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
and so the net rate of flow out of the CV through the faces with centres 𝑅𝑅 and 𝑆𝑆 is 
 

�𝜌𝜌𝜌𝜌𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦�𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 − 𝜌𝜌𝜌𝜌𝜙𝜙 𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 

 

=
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
Similarly, the net rate of flow out of the CV through the faces normal to the 𝑧𝑧 axis with centres 𝑇𝑇 and 
𝑈𝑈 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
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Adding together the terms for the three pairs of faces, the sum of the net rates of outflow of scalar 𝛷𝛷 is 
 

�
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑧𝑧

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
The net rate of inflow of 𝛷𝛷 by convection, the second term in (1.1), is therefore 
 

−�
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑧𝑧

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1]      (1.3) 
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1.3 Diffusion terms 
 
The third term on the right of (1.1) represents the net flow rate of 𝛷𝛷 into the CV by diffusion. We shall 
denote the diffusion flux per unit area by 𝒒𝒒 [kg 𝛷𝛷 m−2 s−1]. 𝒒𝒒 has components 𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦, and 
𝑞𝑞𝑧𝑧 [kg 𝛷𝛷 m−2 s−1] in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 coordinate directions, respectively. Diffusion is considered positive 
if it is in the positive coordinate direction. 
 
Referring to Figure 2, the rate of diffusion of 𝛷𝛷 through the face perpendicular to the 𝑥𝑥 direction whose 
centre is 𝑃𝑃 is 𝑞𝑞𝑥𝑥 [kg 𝛷𝛷 m−2 s−1] times the area of the face, 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [m2]; that is, 
 

𝑞𝑞𝑥𝑥  𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of diffusion of 𝛷𝛷 through the opposite face whose centre is 𝑄𝑄 is 
 

�𝑞𝑞𝑥𝑥 +
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥� 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
and so the net rate of diffusion out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝑞𝑞𝑥𝑥 +
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 − 𝑞𝑞𝑥𝑥  𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 
 

=
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
 
 
Figure 2  Diffusion of 𝛷𝛷 in the 𝑥𝑥 direction 
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𝑅𝑅 

𝑆𝑆 

𝑇𝑇 

𝑈𝑈 

𝑑𝑑𝑥𝑥 

𝑑𝑑𝑧𝑧 

𝑑𝑑𝑦𝑦 

�𝑞𝑞𝑥𝑥 +
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥� 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 𝑞𝑞𝑥𝑥  𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 

𝑧𝑧 

𝑦𝑦 

𝑥𝑥 
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Similarly, the net rate of diffusion of 𝛷𝛷 out of the CV through the faces normal to the 𝑦𝑦 axis with centres 
𝑅𝑅 and 𝑆𝑆 is 
 

𝜕𝜕𝑞𝑞𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
and the net rate of diffusion of 𝛷𝛷 out of the CV through the faces normal to the 𝑧𝑧 axis with centres 𝑇𝑇 
and 𝑈𝑈 is 
 

𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of diffusion of 𝛷𝛷 into the CV is therefore 
 

−�
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑞𝑞𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
The scalar mass fluxes 𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦, and 𝑞𝑞𝑧𝑧 [kg 𝛷𝛷 m−2 s−1] in this equation are related to the scalar property 
gradients by Fick’s law of diffusion: 
 

𝑞𝑞𝑥𝑥 = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

 
 

𝑞𝑞𝑦𝑦 = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

 

 

𝑞𝑞𝑧𝑧 = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

 
 
where 𝜌𝜌 [m2 s−1] is a diffusion coefficient. The net rate of diffusion of 𝛷𝛷 into the CV, the third term 
in (1.1), is therefore 
 

�
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
� +

𝜕𝜕
𝜕𝜕𝑦𝑦

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
� +

𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
��𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1]      (1.4) 

 
 
 
 
  



AKINSON SCIENCE LIMITED  THEORY GUIDE 

11 
 

1.4 Source term 
 
The scalar 𝛷𝛷 may be created or destroyed as the mixture flows through the CV. If 𝑆𝑆𝛷𝛷 [kg 𝛷𝛷 kg−1 s−1] is 
the rate at which 𝛷𝛷 is created or destroyed per unit mass of mixture then the rate of creation or 
destruction of 𝛷𝛷 in the CV, the fourth term in (1.1), is 
 

𝜌𝜌𝑆𝑆𝛷𝛷𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧       [kg 𝛷𝛷 s−1]      (1.5) 
 

1.5 Scalar conservation equation 
 
Substituting the terms (1.2), (1.3), (1.4) and (1.5) into (1.1) and dividing by 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 gives the 
conservation equation for the scalar property 𝛷𝛷 in Cartesian coordinates: 
 

𝜕𝜕(𝜌𝜌𝜙𝜙)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜙𝜙)
𝜕𝜕𝑧𝑧

 

 

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
� +

𝜕𝜕
𝜕𝜕𝑦𝑦

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
� +

𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
� + 𝜌𝜌𝑆𝑆𝛷𝛷      [ kg 𝛷𝛷 m−3 s−1]      (1.6) 
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2 Scalar conservation equation in cylindrical coordinates 
 

2.1 Control volume analysis 
 
We can derive the scalar conservation equation in cylindrical coordinates based on the concept of an 
infinitesimal control volume, just as we did with the scalar conservation equation in Cartesian 
coordinates. This time we consider the properties of the flow into and out of the infinitesimal annular 
control volume (CV) shown in Figure 3. The lengths of the sides 𝑑𝑑𝑟𝑟, 𝑟𝑟𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑧𝑧 are small enough for 
us to be able to neglect quantities of order 𝑑𝑑𝑟𝑟², 𝑟𝑟²𝑑𝑑𝜃𝜃² or 𝑑𝑑𝑧𝑧². Recalling (1.1), the conservation principle 
for any scalar property 𝛷𝛷 can be written 
 
 

 
 
The mass fraction of a scalar property in a mixture is the mass of the property per unit mass of mixture. 
We shall denote the mass fraction of 𝛷𝛷 by 𝜙𝜙 [kg 𝛷𝛷 kg−1 mixture]. 
 
 
 
 
  

Rate of increase 
of 𝛷𝛷 in CV = 

Net rate of flow 
of 𝛷𝛷 into CV by 
convection 

+ 
Net rate of flow 
of 𝛷𝛷 into CV by 
diffusion 

+ 

Rate of creation 
or destruction of 
𝛷𝛷 by an external 
source 
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Figure 3  Infinitesimal control volume for cylindrical coordinates 

 
 
 
 
 
  

𝑑𝑑𝑟𝑟 

𝑑𝑑𝑧𝑧 

𝑟𝑟𝑑𝑑𝜃𝜃 

𝑧𝑧 

𝑦𝑦 

𝑟𝑟 

𝜃𝜃 
𝑥𝑥 

𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧 

𝑃𝑃 𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 

𝑄𝑄 

𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
𝑑𝑑𝑟𝑟 

𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)
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𝜌𝜌𝜌𝜌z𝜙𝜙 

𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙 

𝑅𝑅 
𝑇𝑇 

𝑈𝑈 
𝑆𝑆 
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2.2 Transient and convection terms 
 
Figure 3 shows an infinitesimal annular control volume (CV) through which a fluid mixture containing 
a scalar 𝛷𝛷 is flowing. The mass of scalar 𝛷𝛷 in the CV is equal to the mass fraction 𝜙𝜙 [kg 𝛷𝛷 kg−1] times 
the mass of mixture in the CV, 𝜌𝜌 𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 [kg]; that is, 𝜌𝜌𝜙𝜙 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [kg 𝛷𝛷]. Note that kg 𝛷𝛷 is taken 
to mean kg of scalar 𝛷𝛷 and kg alone is taken to mean kg of mixture. The rate of increase of scalar 𝛷𝛷 
with time, the left-hand term in (1.1), is therefore 
 

𝜕𝜕(𝜌𝜌𝜙𝜙)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1]      (2.1) 
 
The scalar may enter or leave through any of the faces 𝑃𝑃 to 𝑈𝑈 in Figure 3, transported by the mass flow 
of mixture through the faces. The rate of flow of scalar 𝛷𝛷 through the face perpendicular to the 
𝑟𝑟 direction whose centre is 𝑃𝑃 is 𝜙𝜙 [kg 𝛷𝛷 kg−1] times the mass flow of mixture through the face, 
𝜌𝜌 𝜌𝜌𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧; that is, 
 

𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of flow of scalar 𝛷𝛷 through the opposite face whose centre is 𝑄𝑄 is 
 

�𝜌𝜌𝑢𝑢𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝑢𝑢𝜙𝜙)
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟� (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 

 
and so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
𝑑𝑑𝑟𝑟� (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 − (𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙) 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 = 

 
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + 𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +

𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
We can neglect the term in 𝑑𝑑𝑟𝑟², so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with 
centres 𝑃𝑃 and 𝑄𝑄 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + 𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙 𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
The rate of flow of scalar 𝛷𝛷 through the face perpendicular to the 𝜃𝜃 direction whose centre is 𝑅𝑅 is 
𝜙𝜙 [kg 𝛷𝛷 kg−1] times the mass flow of mixture through the face, face, 𝜌𝜌 𝜌𝜌𝜃𝜃 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧; that is, 
 

(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙) 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 
 
The corresponding rate of flow of scalar 𝛷𝛷 out of the face with centre 𝑆𝑆 is 
 

�𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)

𝜕𝜕𝜃𝜃
𝑑𝑑𝜃𝜃�𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 

 
so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with centres 𝑅𝑅 and 𝑆𝑆 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)
𝜕𝜕𝜃𝜃

𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
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The rate of flow of scalar 𝛷𝛷 through the face perpendicular to the 𝑧𝑧 direction with centre 𝑇𝑇 is 𝜙𝜙 [J kg−1]  
times the mass flow through the face. The area of the face is 
 

𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
so the rate of flow of mass through the face is 
 

(𝜌𝜌𝜌𝜌𝑧𝑧) 𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
and the rate of flow of scalar 𝛷𝛷 through the face is 
 

(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙) 𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
The corresponding rate of flow of scalar 𝛷𝛷 out of the face with centre 𝑈𝑈 is 
 

�𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧�𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 

 
so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with centres 𝑇𝑇 and 𝑈𝑈 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 =
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +

𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)
𝜕𝜕𝑧𝑧

½𝑑𝑑𝑟𝑟2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
We can neglect the term in 𝑑𝑑𝑟𝑟², so the net rate of flow of scalar 𝛷𝛷 out of the CV is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
The sum of the net rates of outflow of scalar 𝛷𝛷 is 
 

�
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
+
𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙
𝑟𝑟

 +
1
𝑟𝑟
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)

𝜕𝜕𝜃𝜃
+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
� 𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 

 
Finally, we can combine the first and second terms in the brackets into one: 
 

�
1
𝑟𝑟
𝜕𝜕(𝑟𝑟𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
+

1
𝑟𝑟
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)

𝜕𝜕𝜃𝜃
+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
� 𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      (2.2) 
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2.3 Diffusion terms 
 
The third term on the right of (1.1) represents the net flow rate of 𝛷𝛷 into the CV by diffusion. We shall 
denote the diffusion flux per unit area by 𝒒𝒒 [kg 𝛷𝛷 m−2 s−1]. 𝒒𝒒 has components 𝑞𝑞𝑟𝑟, 𝑞𝑞𝜃𝜃, and 
𝑞𝑞𝑧𝑧 [kg 𝛷𝛷 m−2 s−1] in the 𝑟𝑟, 𝜃𝜃 and 𝑧𝑧 coordinate directions, respectively. Diffusion is considered positive 
if it is in the positive coordinate direction. 
 
Referring to Figure 4, the rate of diffusion of 𝛷𝛷 through the face perpendicular to the 𝑥𝑥 direction whose 
centre is 𝑃𝑃 is 𝑞𝑞𝑟𝑟 [kg 𝛷𝛷 m−2 s−1] times the area of the face, 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 [m2]; that is, 
 

𝑞𝑞𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
The rate of diffusion of 𝛷𝛷 through the opposite face whose centre is 𝑄𝑄 is 
 

�𝑞𝑞𝑟𝑟 +
𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟� (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1] 
 
and so the net rate of diffusion of 𝛷𝛷 out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝑞𝑞𝑟𝑟 +
𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟� (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 − 𝑞𝑞𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 = 
 

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + 𝜌𝜌𝜌𝜌𝑟𝑟𝑞𝑞𝑟𝑟 𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +
𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
We can neglect the term in 𝑑𝑑𝑟𝑟², so the net rate of flow of scalar 𝛷𝛷 out of the CV through the faces with 
centres 𝑃𝑃 and 𝑄𝑄 is 
 

𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + 𝑞𝑞𝑟𝑟 𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
The rate of diffusion of 𝛷𝛷 through the face perpendicular to the 𝜃𝜃 direction whose centre is 𝑅𝑅 is 
𝑞𝑞𝜃𝜃 [kg 𝛷𝛷 m−2 s−1] times the area of the face, 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧; that is, 
 

𝑞𝑞𝜃𝜃 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 
 
The corresponding rate of diffusion of 𝛷𝛷 out of the face with centre 𝑆𝑆 is 
 

�𝑞𝑞𝜃𝜃 +
𝜕𝜕𝑞𝑞𝜃𝜃
𝜕𝜕𝜃𝜃

𝑑𝑑𝜃𝜃�𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 
 
so the net rate of diffusion of 𝛷𝛷 out of the CV through the faces with centres 𝑅𝑅 and 𝑆𝑆 is 
 

𝜕𝜕𝑞𝑞𝜃𝜃
𝜕𝜕𝜃𝜃

𝑑𝑑𝑟𝑟 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
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Figure 4  Diffusion of 𝛷𝛷 in the 𝑟𝑟, 𝜃𝜃 and 𝑧𝑧 directions 
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𝑧𝑧 

𝑦𝑦 
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𝜃𝜃 
𝑥𝑥 

�𝑞𝑞𝑧𝑧 +
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧� 𝑑𝑑𝑟𝑟(𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 

𝑃𝑃 
𝑞𝑞𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 

𝑄𝑄 

�𝑞𝑞𝑟𝑟 +
𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

𝑑𝑑𝑟𝑟� 
× (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 

�𝑞𝑞𝜃𝜃 +
𝜕𝜕𝑞𝑞𝜃𝜃
𝜕𝜕𝜃𝜃

𝑑𝑑𝜃𝜃� 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 

𝑞𝑞z 𝑑𝑑𝑟𝑟 (𝑟𝑟+½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 

𝑞𝑞𝜃𝜃 𝑑𝑑𝑟𝑟 𝑑𝑑𝑧𝑧 

𝑅𝑅 
𝑇𝑇 

𝑈𝑈 
𝑆𝑆 (𝑟𝑟 + 𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
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The rate of diffusion of 𝛷𝛷 through the face perpendicular to the 𝑧𝑧 direction with centre 𝑇𝑇 is 
𝑞𝑞𝑧𝑧 [kg 𝛷𝛷 m−2 s−1] times the area of the face. The area of the face is 
 

𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
and the rate of diffusion of 𝛷𝛷 through the face is 
 

𝑞𝑞𝑧𝑧 𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
The corresponding rate of diffusion of 𝛷𝛷 out of the face with centre 𝑈𝑈 is 
 

�𝑞𝑞𝑧𝑧 +
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧�𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 
 
so the net rate of rate of diffusion of 𝛷𝛷 out of the CV through the faces with centres 𝑇𝑇 and 𝑈𝑈 is 
 

𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟 (𝑟𝑟 + ½𝑑𝑑𝑟𝑟)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 =
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

½𝑑𝑑𝑟𝑟2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
We can neglect the term in 𝑑𝑑𝑟𝑟², so the net rate of rate of diffusion of 𝛷𝛷 out of the CV is 
 

𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
The rate of diffusion of 𝛷𝛷 into the CV, the third term in (1.1), is therefore 
 

−�
𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟

+
𝑞𝑞𝑟𝑟
𝑟𝑟

 +
1
𝑟𝑟
𝜕𝜕𝑞𝑞𝜃𝜃
𝜕𝜕𝜃𝜃

+
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧 �

𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 
 
Finally, we can combine the first and second terms in the brackets into one: 
 

−�
1
𝑟𝑟
𝜕𝜕(𝑟𝑟𝑞𝑞𝑟𝑟)
𝜕𝜕𝑟𝑟

+
1
𝑟𝑟
𝜕𝜕𝑞𝑞𝜃𝜃
𝜕𝜕𝜃𝜃

+
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

� 𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      (2.3) 

 
The scalar mass fluxes 𝑞𝑞𝑟𝑟, 𝑞𝑞𝜃𝜃, and 𝑞𝑞𝑧𝑧 [kg 𝛷𝛷 m−2 s−1] in this equation are related to the scalar property 
gradients by Fick’s law of diffusion: 
 

𝑞𝑞𝑟𝑟 = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟

 
 

𝑞𝑞𝜃𝜃 = −
𝜌𝜌𝜌𝜌
𝑟𝑟
𝜕𝜕𝜙𝜙
𝜕𝜕𝜃𝜃

 
 

𝑞𝑞𝑧𝑧 = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

 
 
where 𝜌𝜌 [m2 s−1] is a diffusion coefficient. The net rate of diffusion of 𝛷𝛷 into the CV, the third term 
in (1.1), is therefore 
 

�
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜃𝜃

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝜃𝜃
� +

𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
��𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg 𝛷𝛷 s−1]      (2.4) 
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2.4 Source term  
 
The scalar 𝛷𝛷 may be created or destroyed as the mixture flows through the CV. If 𝑆𝑆𝛷𝛷 [kg 𝛷𝛷 kg−1 s−1] is 
the rate at which 𝛷𝛷 is created or destroyed per unit mass of mixture then the rate of creation or 
destruction of 𝛷𝛷 in the CV, the fourth term in (1.1), is 
 

𝜌𝜌𝑆𝑆𝛷𝛷𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧       [kg 𝛷𝛷 s−1]      (2.5) 
 

2.5 Scalar conservation equation 
 
Substituting the terms (2.2), (2.3), (2.4) and (2.5) into (1.1) and dividing by 𝑑𝑑𝑟𝑟 𝑟𝑟𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 gives the 
conservation equation for the scalar property 𝛷𝛷 in cylindrical coordinates: 
 

𝜕𝜕(𝜌𝜌𝜙𝜙)
𝜕𝜕𝜕𝜕

+
1
𝑟𝑟
𝜕𝜕(𝑟𝑟𝜌𝜌𝜌𝜌𝑟𝑟𝜙𝜙)

𝜕𝜕𝑟𝑟
+

1
𝑟𝑟
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃𝜙𝜙)

𝜕𝜕𝜃𝜃
+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧𝜙𝜙)

𝜕𝜕𝑧𝑧
 

 

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜃𝜃

�𝜌𝜌𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝜃𝜃
� +

𝜕𝜕
𝜕𝜕𝑧𝑧
�𝜌𝜌𝜌𝜌

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
� + 𝜌𝜌𝑆𝑆𝛷𝛷      [ kg 𝛷𝛷 m−3 s−1]      (2.6) 
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