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1 Cartesian coordinates 
 
In this theory guide we shall derive the equation of conservation of mass of a moving fluid (the 
continuity equation) in terms of the Cartesian coordinate system and the cylindrical coordinate system. 
In each case the derivation is based on the concept of an infinitesimal control volume. For the case of 
Cartesian coordinates, the continuity equation can be derived by considering the flow of a fluid into and 
out of the infinitesimal rectangular control volume (CV) shown in Figure 1. The edges of the CV are 
parallel to the coordinate axes 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧, and the lengths of the edges 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑦𝑦 and 𝑑𝑑𝑧𝑧 are small enough 
for us to be able to neglect quantities of order 𝑑𝑑𝑥𝑥², 𝑑𝑑𝑦𝑦² or 𝑑𝑑𝑧𝑧². 
 
When applied to the control volume, the conservation principle for any conserved quantity 𝑄𝑄 can be 
written 
 

 
 
 
Figure 1  Infinitesimal control volume for Cartesian coordinates 
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For the continuity equation the conserved quantity 𝑄𝑄 is mass [kg], which is equal to density × volume. 
There are no sources or sinks of mass, so the last term in (1.1) is zero. 
 
The mass of fluid in the CV is 𝜌𝜌 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 [kg] and its rate of increase with time is 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1]      (1.2) 

 
The rate of flow of mass through the face normal to the 𝑥𝑥 direction with centre 𝑃𝑃 is equal to the product 
of the density and the velocity normal to the face (𝜌𝜌𝑢𝑢) and the area of the face 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧, i.e. 
 

(𝜌𝜌𝑢𝑢)𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1] 
 
The corresponding rate of flow of mass out of the parallel face with centre 𝑄𝑄 is 
 

�𝜌𝜌𝑢𝑢 +
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1] 

 
so the net rate of flow out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝜌𝜌𝑢𝑢 +
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 − (𝜌𝜌𝑢𝑢) 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 

 

=
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1]      (1.3) 
 
Similarly, the net rate of flow out of the CV through the faces normal to the 𝑦𝑦 axis with centres 𝑅𝑅 and 
𝑆𝑆 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1]      (1.4) 

 
and the net rate of flow out of the CV through the faces normal to the 𝑧𝑧 axis with centres 𝑇𝑇 and 𝑈𝑈 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1]      (1.5) 
 
By inserting expressions (1.2) to (1.5) into Eqn. (1.1) we obtain 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧 = −�

𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑧𝑧 �𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧      [kg s−1] 

 
After dividing by the volume of the CV, 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧, and moving terms over to the left-hand side of the 
equation we obtain the continuity equation for three-dimensional unsteady compressible flow in 
Cartesian coordinates: 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑧𝑧

= 0      [kg m−3 s−1]     (1.6) 
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2 Cylindrical coordinates 
 

2.1 Method 1 
 
We can derive the continuity equation in cylindrical coordinates based on the concept of an infinitesimal 
control volume, just as we did with the continuity equation in Cartesian coordinates. This time we 
consider the properties of the flow into and out of the infinitesimal annular control volume (CV) shown 
in Figure 2. The lengths of the sides 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑𝜃𝜃 and 𝑑𝑑𝑧𝑧 are small enough for us to be able to neglect 
quantities of order 𝑑𝑑𝑑𝑑², 𝑑𝑑²𝑑𝑑𝜃𝜃² or 𝑑𝑑𝑧𝑧². Recalling (1.1), the conservation principle for any conserved 
quantity 𝑄𝑄 can be written 
 

 
 
 
Figure 2  Infinitesimal control volume for cylindrical coordinates 
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For the continuity equation the conserved quantity 𝑄𝑄 is mass [kg], which is equal to density × volume. 
There are no sources or sinks of mass, so the last term in (1.1) is zero. 
 
The volume of the control volume is 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 [m3], so the mass of fluid in the CV is 𝜌𝜌 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧  
[kg] and its rate of increase with time is 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1]      (2.2) 

 
The rate of flow of mass through the face normal to the 𝑑𝑑 direction with centre 𝑃𝑃 is equal to the product 
of the density and the velocity normal to the face (𝜌𝜌𝜌𝜌𝑑𝑑) and the area of the face 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧, i.e. 
 

(𝜌𝜌𝜌𝜌𝑟𝑟) 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1] 
 
The corresponding rate of flow of mass out of the parallel face with centre 𝑄𝑄 is 
 

�𝜌𝜌𝜌𝜌𝑟𝑟 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑� (𝑑𝑑 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1] 

 
so the net rate of flow out of the CV through the faces with centres 𝑃𝑃 and 𝑄𝑄 is 
 

�𝜌𝜌𝜌𝜌𝑟𝑟 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑� (𝑑𝑑 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 − (𝜌𝜌𝜌𝜌𝑟𝑟) 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 

 

= �𝜌𝜌𝜌𝜌𝑟𝑟 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + �𝜌𝜌𝜌𝜌𝑟𝑟 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 − (𝜌𝜌𝜌𝜌𝑟𝑟) 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 

 

=
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +  𝜌𝜌𝜌𝜌𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1] 
 
We can neglect the term in 𝑑𝑑𝑑𝑑², so the net rate of flow out of the CV through the faces with centres 𝑃𝑃 
and 𝑄𝑄 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 + 𝜌𝜌𝜌𝜌𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1]      (2.3) 
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The rate of flow of mass through the face normal to the 𝜃𝜃 direction with centre 𝑅𝑅 is equal to the product 
of the density and the velocity normal to the face (𝜌𝜌𝜌𝜌𝜃𝜃) and the area of the face 𝑑𝑑𝑑𝑑 𝑑𝑑𝑧𝑧, i.e. 
 

(𝜌𝜌𝜌𝜌𝜃𝜃) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑧𝑧      [kg s−1] 
 
The corresponding rate of flow of mass out of the face with centre 𝑆𝑆 is 
 

�𝜌𝜌𝜌𝜌𝜃𝜃 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

𝑑𝑑𝜃𝜃�𝑑𝑑𝑑𝑑 𝑑𝑑𝑧𝑧      [kg s−1] 

 
so the net rate of flow out of the CV through the faces with centres 𝑅𝑅 and 𝑆𝑆 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

𝑑𝑑𝑑𝑑 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1]      (2.4) 
 
The rate of flow of mass through the face normal to the 𝑧𝑧 direction with centre 𝑇𝑇 is equal to the product 
of the density and the velocity normal to the face (𝜌𝜌𝜌𝜌𝑧𝑧) and the area of the face. The area of the face is 
 

𝑑𝑑𝑑𝑑 (𝑑𝑑 + ½𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃 
 
so the rate of flow of mass through the face is 
 

(𝜌𝜌𝜌𝜌𝑧𝑧) 𝑑𝑑𝑑𝑑 (𝑑𝑑 + ½𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃      [kg s−1] 
 
The corresponding rate of flow of mass out of the face with centre 𝑈𝑈 is 
 

�𝜌𝜌𝜌𝜌𝑧𝑧 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧� 𝑑𝑑𝑑𝑑 (𝑑𝑑 + ½𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃      [kg s−1] 

 
so the net rate of flow out of the CV through the faces with centres 𝑇𝑇 and 𝑈𝑈 is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑑𝑑 (𝑑𝑑 + ½𝑑𝑑𝑑𝑑)𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 =
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 +
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

½𝑑𝑑𝑑𝑑2 𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1] 
 
We can neglect the term in 𝑑𝑑𝑑𝑑², so the net rate of flow out of the CV is 
 

𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1]      (2.5) 
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By inserting expressions (2.2) to (2.5) into (1.1) we obtain 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 = −�

𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
𝜌𝜌𝜌𝜌𝑟𝑟
𝑑𝑑

 +
1
𝑑𝑑
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧 �𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧      [kg s−1] 

 
After dividing by the volume of the CV, 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜃𝜃 𝑑𝑑𝑧𝑧 [m3], and moving terms over to the left-hand side 
of the equation we obtain: 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
𝜌𝜌𝜌𝜌𝑟𝑟
𝑑𝑑

 +
1
𝑑𝑑
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

= 0      [kg m−3 s−1] 
 
We can combine the second and third terms into one, so the continuity equation for three-dimensional 
unsteady compressible flow in cylindrical coordinates is 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
𝑑𝑑
𝜕𝜕(𝑑𝑑𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
1
𝑑𝑑
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

= 0      [kg m−3 s−1]     (2.6) 
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2.2 Method 2 
 
We can derive the continuity equation in cylindrical coordinates from the continuity equation in 
Cartesian coordinates by introducing the vector differential operator del, written 𝛁𝛁, and the divergence 
of a vector V, written 𝛁𝛁⋅V or div V. The vector differential operator is defined by 
 

𝛁𝛁 ≡
𝜕𝜕
𝜕𝜕𝑥𝑥

i +
𝜕𝜕
𝜕𝜕𝑦𝑦

j +
𝜕𝜕
𝜕𝜕𝑧𝑧

k ≡ i
𝜕𝜕
𝜕𝜕𝑥𝑥

+ j
𝜕𝜕
𝜕𝜕𝑦𝑦

+ k
𝜕𝜕
𝜕𝜕𝑧𝑧

 

 
and the divergence of a vector V is defined by 
 

𝛁𝛁⋅V = �
𝜕𝜕
𝜕𝜕𝑥𝑥

i +
𝜕𝜕
𝜕𝜕𝑦𝑦

j +
𝜕𝜕
𝜕𝜕𝑧𝑧

k� ⋅(𝑉𝑉1i + 𝑉𝑉2j + 𝑉𝑉3k) =
𝜕𝜕𝑉𝑉1
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑉𝑉2
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑉𝑉3
𝜕𝜕𝑧𝑧

 

 
Further details of the vector differential operator and the divergence can be found in textbooks on vector 
analysis, such as Ref. [1]. 
 
We can write Eq. (1.6) as follows 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑦𝑦

+
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝑧𝑧

 

 

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ �
𝜕𝜕
𝜕𝜕𝑥𝑥

i +
𝜕𝜕
𝜕𝜕𝑥𝑥

j +
𝜕𝜕
𝜕𝜕𝑥𝑥

k� · (𝜌𝜌𝑢𝑢i + 𝜌𝜌𝜌𝜌j + 𝜌𝜌𝜌𝜌k) 
 

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝛁𝛁 · (𝜌𝜌V) = 0      [kg m−3 s−1]      (2.7) 
 
We can express the divergence in orthogonal curvilinear coordinates as follows 
 

∇ · (𝜌𝜌V) =
1

ℎ1ℎ2ℎ3
�
𝜕𝜕
𝜕𝜕𝑢𝑢1

(𝜌𝜌𝐴𝐴1ℎ2ℎ3) +
𝜕𝜕
𝜕𝜕𝑢𝑢2

(𝜌𝜌𝐴𝐴2ℎ3ℎ1) +
𝜕𝜕
𝜕𝜕𝑢𝑢3

(𝜌𝜌𝐴𝐴3ℎ1ℎ2)�       (2.8) 

 
(see Chapter 7 of Ref. [1]) where (𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3) is an orthogonal curvilinear coordinate system, 
𝑉𝑉1 = 𝑉𝑉1(𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3), 𝑉𝑉2 = 𝑉𝑉2(𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3), 𝑉𝑉3 = 𝑉𝑉3(𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3), and ℎ1, ℎ2, ℎ3 are scale factors. 
 
We can show that the cylindrical coordinate system is orthogonal (see Chapter 7, Problem 3 of Ref. [1]). 
For a cylindrical coordinate system, we have 
 

𝑢𝑢1 = 𝑑𝑑,  𝑢𝑢2 = 𝜃𝜃,  𝑢𝑢3 = 𝑧𝑧 
 

𝑉𝑉1 = 𝜌𝜌𝑟𝑟,  𝑉𝑉2 = 𝜌𝜌𝜃𝜃,  𝑉𝑉3 = 𝜌𝜌𝑧𝑧 
 

ℎ1 = ℎ𝑟𝑟 = 1,  ℎ2 = ℎ𝜃𝜃 = 𝑑𝑑,  ℎ3 = ℎ𝑧𝑧 = 1 
 
(see Chapter 7, Problem 7 of Ref. [1]). Substituting these expressions into (2.8) gives 
 

∇ · (𝜌𝜌V) =
1
𝑑𝑑 �
𝜕𝜕(𝑑𝑑𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝑑𝑑𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

+� 

 

=
1
𝑑𝑑
𝜕𝜕(𝑑𝑑𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
1
𝑑𝑑
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧
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On substituting this expression for ∇·(𝜌𝜌V) into Eq. (2.7), we obtain the continuity equation for three-
dimensional unsteady compressible flow in cylindrical coordinates: 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
𝑑𝑑
𝜕𝜕(𝑑𝑑𝜌𝜌𝜌𝜌𝑟𝑟)
𝜕𝜕𝑑𝑑

+
1
𝑑𝑑
𝜕𝜕(𝜌𝜌𝜌𝜌𝜃𝜃)
𝜕𝜕𝜃𝜃

+
𝜕𝜕(𝜌𝜌𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

= 0      [kg m−3 s−1] 
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3 Integral form of the continuity equation 
 
The divergence theorem of Gauss states that if 𝑉𝑉 is the volume bounded by a closed surface 𝑆𝑆 and 
A(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is a differentiable vector field, then 
 

�𝛁𝛁⋅A 𝑑𝑑𝑉𝑉
𝑉𝑉

= �A . n 𝑑𝑑𝑆𝑆
𝑆𝑆

= �A⋅𝑑𝑑S
𝑆𝑆

      (3.1) 

 
where n is the positive (outward drawn) normal to 𝑆𝑆. Further details of the divergence theorem and 
related integral theorems can be found in Ref. [1]. 
 
In Section 2 we showed how the continuity equation can be written in terms of the vector differential 
operator 𝛁𝛁 (equation (2.7)): 
 

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝛁𝛁 · (𝜌𝜌V) = 0      [kg m−3 s−1] 
 
Integrating (2.7) over a volume 𝑉𝑉 inside a closed surface 𝑆𝑆 gives 
 

�
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑉𝑉

𝑉𝑉

+ �𝛁𝛁⋅(𝜌𝜌v) 𝑑𝑑𝑉𝑉
𝑉𝑉

= 0 

 
or 
 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌 𝑑𝑑𝑉𝑉
𝑉𝑉

+ �𝛁𝛁⋅(𝜌𝜌v) 𝑑𝑑𝑉𝑉
𝑉𝑉

= 0      (3.2) 

 
By applying the divergence theorem to (3.2) we obtain 
 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌 𝑑𝑑𝑉𝑉
𝑉𝑉

+ �(𝜌𝜌v).n 𝑑𝑑𝑆𝑆
𝑆𝑆

= 0     (3.3) 

 
We now have the equation of continuity in terms of the vector differential operator 𝛁𝛁 (2.7) and as an 
integral equation (3.3). 
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