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1 Control volume analysis

The energy of a mass of fluid consists of the sum of its internal energy, kinetic energy and potential
energy. To derive the energy equation, we begin with the first law of thermodynamics. When applied
to the control volume in Figure 1, the first law can be written:

Rate of increase Rate of flow of Rate of flow of
of energy in CV energy into CV energy out of CV

Rate of heat Rate at which
transfer into CV surface and body
by conduction forces do work
on CV

)

We shall denote the internal energy per unit mass of fluid by e [J kg=1]. The kinetic energy per unit
mass K is

v+ v2 4+ v?2
K=—"—7—= [kg™']

We shall denote the sum of these components by ¢ [] kg—1], i.e.

v2 +v: +v2
£=e+rTBZ Jkg™1]
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Figure 1 Infinitesimal control volume for cylindrical coordinates

d(pvre)

d
or r
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2 Transient and convection terms
The amount of energy in the CV is equal to the energy per unit mass ¢ [J kg—1] times the mass of fluid

in the CV, p dr rd6 dz; that is, p € dr rd6 dz []]. The rate of increase of energy with time, the left-
hand term in Eq. (1), is therefore

0

Energy may enter or leave through any of the faces P to U in Figure 1, transported by the mass flow
through the faces.

The rate of flow of energy through the face perpendicular to the r direction whose centre is P is
€ [J kg—1] times the mass flow through the face, p v, rd8 dz; that is,

prerdddz []s71]

The rate of flow of energy through the opposite face whose centre is Q is
0
<pvrs + %dr) (r+dr)d6dz [Js™!]

and so the net rate of flow of energy out of the CV through the faces with centres P and Q is

d(pvre)
pUy€ + Em dr | (r +dr)d6 dz — (pv,e) rd8 dz =

d
(/;er) drrd@ dz + pv,.e dr df dz + ——— (p vré) dr? df dz

We can neglect the term in dr?, so the net rate of flow of energy out of the CV through the faces with
centres P and Q is

0
Mdr rdf dz + pv,e dr d6 dz

The rate of flow of energy through the face perpendicular to the 6 direction whose centre is R is
€ [J kg—1] times the mass flow through the face, p vs dr dz; that is,

(pvge) dr dz
The corresponding rate of flow of energy out of the face with centre S is

d
(pvee + (12;7995) d9> dr dz

so the net rate of flow of energy out of the CV through the faces with centres R and S is

d(pvge)

30 dr do dz
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The rate of flow of energy through the face perpendicular to the z direction with centre T is € [] kg—1]
times the mass flow through the face. The area of the face is

dr (r + Y%dr)dé
so the mass flow through the face is
(pv,) dr (r + Y%dr)d6
and the rate of flow of energy through the face is
(pvye) dr (r + Yodr)d6

The corresponding rate of flow of energy out of the face with centre U is

0
(pvze + (l;‘;zf) dz) dr (r + Ydr)dé

so the net rate of flow of energy out of the CV through the faces with centres T and U is

Yodr? d6 dz

da(pv,s d(pv,e d(pv,s
(I;ZZ)dr(r+1/zdr)d9dz= (pZZ)drrdez+ (paZ)

We can neglect the term in dr?, so the net rate of flow of energy out of the CV is

d(pv,e)

dr rdf dz

The sum of the net rates of outflow of energy is

d(pvre)  pvre  10(pvge)  0d(pv,
[ar+r+?ae M

£)
] dr rdf dz

Finally, we can combine the first and second terms in the brackets into one:

10(rpvre) N 10(pvge) N d(pv,e)
T or r 00 0z

] drrd8dz (3)
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3 Heat transfer term
The third term on the right of (1) represents the heat transfer into the CV by conduction. We shall denote
the heat flux per unit area by q [] m~2 s—1]. g has components g, g, and q, [ m~2 s~1] in the r, 8 and

z directions, respectively. Heat transfer is considered positive if it is in the positive coordinate direction.

Referring to Figure 2, the rate of heat flow through the face perpendicular to the r direction whose
centre is P is qr [ m~2 s~1] times the area of the face, rd6 dz [m?]; that is,

q,rdf dz

The rate of heat flow through the opposite face whose centre is Q is

aqy
qr + Em dr | (r +dr)d6 dz

and so the net rate of heat flow our of the CV through the faces with centres P and Q is

9
(qr + %dr) (r + dr)d6 dz — g, rd6 dz

04y

aq
ar

. dr) rdf dz + (qr +

o dr) drdf dz —q,rdf dz

(14

9 9
qrr drrdf dz + q, dr d dz + qrr

dr? de dz

We can neglect the term in dr?, so the net rate of heat flow out of the CV through the faces with centres
P and Q is

aq;
T

drrdddz+q,drdfdz [Js™!]

The rate of heat flow through the face normal to the 8 direction with centre R is gs [] m~2 s~1] times the
area of the face, dr dz [m?]; that is,

qg dr dz

The corresponding rate of heat flow out of the face with centre S is

dqp
(CIQ + ﬁdt?) dr dz

so the net rate of heat flow out of the CV through the faces with centres R and S is

dqp 1
%drdez [Js™]
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Figure 2 Heat flows in the r, 8 and z directions

THEORY GUIDE

aq
(qr + arr dr)

X (r+ dr)d6 dz

qzdr (r+%dr)do

>y

The rate of heat flow through the face normal to the z direction with centre T is g, [] m~2 s—1] times the

area of the face. The area of the face is

dr (r + Y%dr)d6é

so the rate of heat flow through the face is

q, dr (r + Y2dr)d6é

The corresponding rate of flow of mass out of the face with centre U is

0q;
q, + —Zdz dr (r + Y2dr)do

d

so the net rate of heat flow out of the CV through the faces with centres T and U is

aq aq

0z z

We can neglect the term in dr?, so the net rate of flow out of the CV is

29,

10

—_iz -1
3 drrdddz [kgs™]

z zZ aqz
dr (r + %dr)do dz = 3 dr rd6 dz + El/zdr2 do dz
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The rate of heat flow info the CV, the third term on the right of (1), is therefore

_(aqr qr  10q9  0q,
or r r dé 0z

+ Iy S S gz s

We can combine the first two terms in the brackets into one, so the rate of heat flow into the CV is

10rq, 10qe  0q, 1
(7 ar ;W+5)d”dedz Us™]

The heat flux components g, g, q, are

oT k oT oT

ar=—ko do=-T55 @=—kg-

where k [W m~1 K-1] is the thermal conductivity of the fluid. We can now write the heat flow into the
CV, the third term on the right of (1), in terms of temperature:

10(k6T>+1 6(k6T>+6(k6T>d 46 d 0s @
[rarrar 200\ 30) " 3z az]” z s

11
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12
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4 Pressure work term

The rate at which pressure does work on one side of a flat moving fluid surface is the product of the
pressure, the area of the surface, and the component of velocity normal to the surface. By definition, a
positive pressure acts inward. Referring to Figure 3, the rate at which work is done on the fluid that
enters the CV through the face perpendicular to the r direction whose centre is P is

pv,rdl dz

The rate at which work is done on the fluid that leaves the CV through the face perpendicular to the r
direction whose centre is Q is

- [pvr ALY dr] (r+dr)dé dz

d(pv, d(pv,
= - [pvr + (grr) dr] rdf dz — [pvr + (grr) dr] dr df dz

a(pvy)
or

= —pv,rdf dz — drrdf dz — pv, dr d dz

after neglecting the term in (dr)?. The net pressure work associated with the two faces normal to the r
direction is

_d(pvy)
or

drrdf dz —pv,drdfdz [Js™!]

The rate at which work is done on the fluid that enters the CV through the face perpendicular to the 8
direction whose centre is R is

pvg dr dz

The rate at which work is done on the fluid that leaves the CV through the face perpendicular to the 8
direction whose centre is T is

d(pve)
—[pvg + 28 dé|drdz

The net pressure work associated with the two faces normal to the 8 direction is

_ 0(pvy)

-1
50 drdfdz [Js™]

13
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Figure 3 Pressure work done in the r, 8 and z directions

z
4 a(pv,)
(pvz + 57 dz
X dr rdf 0
i pvg + (Pvo) do |dr dz
a0
pvrrdl dz dr)do
pvedrdz pv, + a(g:r) dr)
X (r+dr)d6 dz
| >y
pv, dr (r + Yadr)do
T

The rate at which work is done on the fluid that enters the CV through the face perpendicular to the z
direction with centre at T is pv, times the area of the face. The area of the face is

dr (r + Y%dr)dé
so the rate of work done is
pv, dr (r + Ydr)do

The rate at which work is done on the fluid that leaves the CV through the face perpendicular to the z
direction whose centre is U is

d(pv
- [pvz + (SZZ) dz] dr (r + Y.dr)d6

a(pvy)
Z

a(pv,)

=— [pvz + dz] drrdf — [pvz + dz] Y%(dr)?do

We can neglect the term in (dr)?, so the work done on the fluid that leaves the CV is

d(pv,)
—[pvz + 57 dz|drrdf

14
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The net pressure work associated with the two faces normal to the z direction is

a(pv,)

dz] drrd0 + pv, dr (r + ¥%dr)do

a(pvz) 2
= —pv,drrdf dz — P dr rd6 dz + pv, dr rd6 + pv,%(dr)-do
do(pv.
_9Gv) drrdfdz [Js™!]
0z

after neglecting the term in (dr)2.

After adding together the terms for the three pairs of faces, the net pressure work done on the fluid in
the CV, the fourth term on the right of (1), is

drrdf dz

a(pvr) bV 1 a(Pve) a(pvz)
_[ or 7 Tr a8 oz

We can combine the first two terms in the brackets, so the net pressure work done on the fluid in the
CVis

drrd6dz [Js7'] (5)

_ la(rpvr)+la(pv6)+a(pvz)
r or r 06 0z

15
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5 Work done by viscous stresses

If a fluid element changes size or shape with time, viscosity creates further stresses that may act normal
to a surface (a viscous normal stress) or tangentially (a viscous shear stress). We define the different
components of viscous normal stress and viscous shear stress as shown in Figure 4. The first subscript
of the symbol ¢ represents the direction of the stress and the second subscript represents the direction
of the surface normal.

Figure 4 Viscous stresses on the control volume

5.1 Work done by normal stresses

By convention, a normal stress is positive if it acts outwards from the CV (in contrast with p, which is
positive inwards). The rate of work done by the normal stresses -, 099 and o, on the fluid in the CV
can be found in the same way as for p, remembering the change of sign. Thus the rate of work done by
the normal stresses is

la(ro_rrvr) +la(0_99770) + a(O-ZZUZ)

-1
——ar ~ 30 3 drrdfdz [Js™'] (6)

17
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5.2 Work done by shear stresses

By convention, the shear stresses are taken as positive on the faces farthest from the origin. Thus a shear
stress g, acts in the positive 8 direction on the visible (upper) face perpendicular to the r axis and a
corresponding shear stress acts in the negative 6 direction on the invisible (lower) face perpendicular
to the r axis.

Referring to Figure 4, the shear stress acting in the 8 direction on the lower face normal to the r direction
is —agr and the rate at which work is done by this stress is

—0g,vgrdf@dz  [Js71]
The shear force acting in the 8 direction on the upper face normal to the r direction is

do
(UQT + (’):r dr) (r+dr)dddz |[N]

and the rate at which work is done by this stress is

60'91« 0179
(O'gr + i dr) (ve + Wdr) (r+dr)dé dz

Jav do, dag, 0V
= [Uerve + Jgra—redr + vy o gy 4 228

il 2
o 3 o (dr) ] (r+dr)dfdz

6179 60'91« 1
= (agrvgr + g9, vedr + angrdr + vy - rdr) dodz [Js71]

after neglecting the term in (dr)?. The net work done by the shear stress g on the two faces normal to
the r direction is

(4] aO'er
(aerver + 0g,vgdr + o, Wrdr + vg o rdr) d6 dz — g9, vg rdf dz

B <09rv9 0(0g,vg)
= +
T ar

> dr rdf dz

10
= 19(roerve) drrd6dz [Js™!]
r ar

There is also a shear stress o, on these two faces, and the net work done by this shear stress is

10
= 10@oyrv,) drrd6dz [Js™!]
r Jar

The net work done by shear stresses on the two faces normal to the r direction is therefore

10(rogrve) 10(rogv,)
— + —
T or T or

drrdddz [Js71]

18
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Referring to Figure 4, the shear stress acting in the r direction on the lower face normal to the 6 direction
is —are and the rate at which work is done by this stress is

—09v.drdz  [Js71]

The shear force acting in the r direction on the upper face normal to the 8 direction is

aO're
(O'rg + W d@) dr dz [N]

and the rate at which work is done by this stress is

( +aa”’d9)( +avrd9>d d
O-Te 69 vr 69 raz

v do. 00,9 0V
= (argvr +0r9—2d0 + v, a;” do + a;” a—er(de)z) dr dz

0
= <O'r917r + %d@) dr dz

after neglecting the term in (d@)?. The net work done by the shear stress ¢ on the two faces normal to
the 6 direction is

d(orgV
<ar9vr + %d&) dr dz — oV, dr dz

l 0 (UTG vr)

-1
~ 30 drrdddz [Js™]

There is also a shear stress 0,9 on these two faces, and the net work done by this shear stress is

_ l 0 (029 vz)

-1
~ %0 drrdfdz [Js™ ]

The net work done by shear stresses on the two faces normal to the 6 direction is therefore

la(o'revr) +la(0-29vz)
r 00 r 00

drrdfdz [Js™!]

19
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Referring to Figure 4, the shear stress acting in the r direction on the lower face normal to the z direction
is —ar, and the rate at which work is done by this stress is
—0,, 0y dr (r + Y2dr)do
= —0,,v, dr rd — o,,v, % (dr)*do
=—0.,v.drrdd [Js71]
after neglecting the term in (dr)?.

The shear force acting in the r direction on the upper face normal to the z direction is
d0,,
(arz + Wdz) dr (r + %dr)d6 [N]
and the rate at which work is done by this stress is

do,, av,
(Urz + Wdz) (vr + Edz) dr (r + Y2dr)do

av, do,, da,, 0 vr
= (arzvr + arzgdz + Wdz +— % (dz) )dr (r + %dr)de

d(oy,v
= <arzvr +%dz> drrdd [Js71]

after neglecting terms in (dz)? and (dr)?. The net work done by the shear stress g, on the two faces
normal to the z direction is

d
<0rzvr + (Jg—;vr) dz) dr rdf — o,,v, dr rd6

GRS

drrdfdz [Js™!]
dz

There is also a shear stress o4, on these two faces, and the net work done by this shear stress is

_ 9(0g,vg)

= drrdfdz [Js™!]

The net work done by shear stresses on the two faces normal to the z direction is therefore

a(o_rzvr) + 6(0_92779)

-1
P e drrdfdz [Js™*]

The net work done by shear stresses on the fluid in the CV, is therefore

la(ro'erve)_}_la(razrvz) +la(0r9vr) 16(0'29172)+a(0'rzvr)+a(0'92179)
r ar r ar r 06 r 06 0z 0z

drrdfdz (7)

20
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6 Body force terms

The simplest example of a body force is the gravitational force. The fluid in the CV is subject to a
gravitational force equal to the mass of the fluid p dr rd@ dz times the acceleration due to gravity
g [ms-1]; that is, p g dr rdf dz [kg m s~1]. A body force is a vector, so in general it has three
components, fr, fo, f2 per unit mass [m s—1]. The body forces acting in the r, 8 and z coordinate
directions are, respectively,

pfrdrrd@dz, pfgdrrd@dz, pf,drrdddz

The rate of work done by the body forces on the fluid in the CV is simply work = force X velocity;
that is,

(Urfr + vofe + vzfz)p drrdfdz (8)

21
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7 Energy equation in terms of stress

Substituting the terms (2), (3), (4), (5), (6), (7) and (8) into Eq. (1) and dividing by dr rd6 dz gives the
energy equation:

at r ar r

+[1 0 ( kaT)+ 10 (kaT)+ d (kaT)]
ror or r200\ 00 dz\ 0z

_ la(TPUr)_i_la(Pve)_'_a(PVz)
r or r 00 0z

a(pe>__[1a(rpvrs) 12%9) , 2v)

1 a(TO'T,-U,-) 1 0(0'99179) a(0'22172)
+[¥ or  'r 99 | oz

+ la(raerve)_}_la(razrvz) +la(0r9vr) 16(0'29172)+a(0'rzvr)+a(0'92179)
T oar T or r 00 r 00 0z 0z

plofr tvofo +v.f] S_l] C))

where the energy per unit mass ¢ [J kg—1] is

v2 + v3 + v2
s=e+rf0z Jkg™1]

23
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8 Equation for internal energy

We now have an equation for the internal and kinetic energy in a three-dimensional, unsteady,
compressible fluid flow. To obtain an equation for the internal energy e alone, we must subtract out the

kinetic energy K terms

0(pK) , 10(rpv,K)  10(pveK)  3(pv,K)
Jat r ar r 00 0z

from the energy equation.

In Ref. [1] we derived the conservation equation for K in cylindrical coordinates:

dpK N 1d(rpv,.K) N 1d(pvgK) N d(pv,K)
ot r or r 00 PYz""5,

"or rae Zoz

. doyr  100y9 00y,  On  Ogg t 10099_}_% dogy , 0oy,  Org
"' oar r 060 0z r r 91r a6 T or 0z T

10ro, 100,9 0d0,,
+”Z[F ar Troae T az]

pvrfr + pvofe + pv.f, [kg™'s™']  (10)

Subtracting (10) from (9) gives

d(pe) _ _[1a(rpvre) L1 1 a(pvee) a(pvze)
at r ar r

+[1 0 ( kaT)+ 10 (kaT)+ d (kaT)]
ror\U%ar) " r209\"30) T 92\" a2

B la(TPVr)_i_la(PUe) a(PVz) [ ap LY ap a_P]+@
r or r 00 60 0

where 0 is the viscous dissipation term.

This equation simplifies to

200 __[10071) 106w 9010
ot T or T

+[1 0 ( kaT)+ 10 (kaT)+ d <6T)]
ror or r290\ 00 0z \0z

19(rv,) 10vg dv,
ﬂkm~ﬁﬁ*a*@<m

25
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9 Viscous dissipation term

The viscous dissipation term in (11) is

1 a(TO'T,-U,-) 1 0(0'99179) a(0'22172)
9‘[? or  'r 99 | oz

10 (TGBTUB) 10 (ro'zrvz) 10 (O're 17,.) 10 (0'29 vz) a(Urzvr) 0 (UGZUB)
+[F or 7 or r 00 7 98 ' o9z | oz

_vr

aarr 1 aar@ aO-rz Orr 0-99] [1 00-99 Oor ad@r ad@z Org
— Ve

o Y790 Yoz T - 790 T T Taz t 7

10(roy,) N 100, N do,,
Ve v ar r 00 0z

This equation simplifies to

0 dv,. 0gg Vg av,
=0 ——+t———+ 0, ——
or  r 00 % 0z
Org OV av, dvg _ OprVg dvg v, 0,90V, OggVy

(12)

+ 09, 9z + Oy

r W+rae

In cylindrical coordinates the stress terms are

av, 19(rv,) 10vy 0dv,
=2u—+ 2= 8,7z
Orr = 215, + <r or +r 00 + 0z

—2 (__ U 10ve  OVz
966 Hr69+r+ r or r69+62

dv, 19(rv,) 10vg dv,
dz +A<_ ar ;%-‘_62

10vy vr) A(la(rvr) 10vg 6172>

Ozz = 214

10v, 0dvg vy
“ﬂ”ﬁWGﬁ*W"ﬂ

v, 0dv,
rz = Oar = 1 (E W)
10v, O0dvg
0r =020 =1 (- 55 + ;)

27
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Substituting the stress equations into (12) gives

v\ 10vg v\
9=2“(W) ”ﬂ(?%* ) +2“(E)

10v, 0vg\°
+u ( Z+—9) +u

(014 N c’)vz)z (1 dv, dvg v9>2
radg 0z

oz or) "G Tar T

19(rv,) 10vg dv, 2
”(? or treo Taz) ¥

Substituting (13) into (11) gives the equation for internal energy e alone in cylindrical coordinates in
terms of temperature and velocity:

at r ar r

+[1 0 ( kaT)+ 10 (kaT)+ d (kaT)]
ror r or r200\ 00 dz\ 0z

[16(1"14) 10vy 0Jv,
_p — — —

d(pe) _ F a(rpvre) 1 a(pvee) a(pvze)

r or +r% 0z

+2 <6vr) +2 (16v9+ )2 ) (avz)
o #\F a0 #\a

10dv, Jdvg z
M (r a0 +E) +

19(rv,) 10vg dv, 2
”(? or traeo Taz) Y

(014 N c’)vz)z (1 dv, dvg v9>2

oz Tor) PGt T

28
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10 Enthalpy equation

The enthalpy per unit mass h is defined by

h=e+g
p

To obtain the conservation equation for h, we need to add

p p p p
2(e5)  12(ewg) 19(ovog) 0(eF) ap 106um 1000 | 20
ot r  or r 90 dz ot r Or r 90 0z

to both sides of (14). This gives

ot T ar r 00 0z

4 10 ( k6T>+ 1 0 <k6T>+ d <k6T>
[rar or) T 200\"30) " 5z az]

d dp vpd d
p,, O vedp  Op

mmoz_mewm+1mmw0+meq

M TR = TR
av, z 10vg v, z av, z
vau(5r) va(ige ) v2u(3)
4 (1 av, N 6179)2 4 (avr N 6172)2 N (1 av, 4 dvg U@)Z
K r 00 0z K 0z oar K r 00 or T

19(rv,) 10vy 0dv, 2
+1Grar 70 Taz) @Y

which is the conservation equation for the enthalpy h in terms of temperature and velocity for a three-
dimensional, unsteady, compressible fluid flow.

29
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The continuity equation in cylindrical coordinates is

dp  10(rpv,)  10(pve) = 0(pvy)
awtr o T e TTaz O (16)

(see Ref. [2]). If we multiply (16) by the enthalpy h and subtract the result from the left-hand side of
(15), we obtain

6r+ r 69+v2$

+[1 0 ( kaT)+ 10 (kaT)+ d (kaT)]
ror r or r200\ 00 dz\ 0z

dp dp vgdp dp
+E+Ura+7%+vzz

dh dh vy dh oh
AL T

2

av, 10vg v, z av,
+2“<W) +2“(;%+7) +2“(¥)

2

1dv, Jdvg z dav, 61722 10v, Jdvyg vy z
+“(?ae +¥) +”(E+W) “‘(?%*W‘T)

19(rv,) 10vy 0v, 2
”(7 or t7ee Taz) A7

This is the non-conservative form of the enthalpy equation.
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