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1 Control volume analysis

Momentum is a vector quantity, so there are three momentum components, one for each coordinate
direction, and three momentum equations. To derive the equation of, say, the x component of
momentum, we apply Newton’s second law of motion (the principle of conservation of momentum) to
the infinitesimal rectangular control volume (CV) shown in Figure 1. When applied to the CV,
Newton’s second law can be written:

Rate of increase Rate of flow of x Rate of flow of x Sum of x
of x component component component components of
momentum of =~ | momentum into ~ | momentum out * | forces applied )
fluid in CV Cv of CV to fluid in CV
Figure 1 Infinitesimal control volume for Cartesian coordinates
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2 Transient and convection terms

The x component of momentum in the CV is equal to the x component of velocity, u [m s—1], times the
mass of fluid in the CV, p dx dy dz [kg]; that is, pu dx dy dz [kg m s—1]. The rate of increase of x
component momentum with time (the first term in Eq. (1)), is therefore

a(pu)
ot

dxdydz [kgms™2] (2)

X component momentum may enter or leave through any of the faces P to U in Figure 1, transported by
the mass flow through the faces.

The rate of flow of x component momentum through the face perpendicular to the x direction whose
centre is P is u [m s—1] times the mass flow through the face, pu dy dz [kg s—1]; that is,

pu?dydz [kgms2]

The rate of flow of x component momentum through the opposite face whose centre is Q is

p] 2
<pu2 + (g: ) dx) dydz [kgms™?]

and so the net rate of flow of x component momentum out of the CV through the faces with centres P
and Q is

d(pu?
<pu2 + (gx )dx> dy dz — pu? dy dz

_ d(pu?)

-2
9% dxdydz [kgms™“] (3)

The rate of flow of x component momentum through the face perpendicular to the y direction whose
centre is R is u [m s—1] times the mass flow through the face, pv dx dz [kg s~1]; that is,

puvdx dz [kgms™?]
The rate of flow of x component momentum through the opposite face whose centre is S is

d(puv)

<puv + dy) dxdz [kgms™?]

and so the net rate of flow out of the CV through the faces with centres R and S is

d(puv)

<puv + dy) dx dz — puv dx dz

_ 0(puv)

dxdydz [kgms™2] (4)
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Similarly, the net rate of flow out of the CV through the faces normal to the z axis with centres T and
Uis

d(puw)

dxdydz [kgms™2] (5)

Adding together (1.3), (1.4) and (1.5), the sum of the net rates of outflow of x component momentum
is

d(pu®) N d(puv) 4 d(puw)
d0x dy dz

dxdydz [kgms™?] (6)

3 Body force terms

There are two types of forces acting on the fluid in the CV: body forces and surface forces. The simplest
example of a body force is the gravitational force. The fluid in the CV is subject to a gravitational force
equal to g [m s—2], the acceleration due to gravity, times the mass of the fluid, p dx dy dz [kg]; that is,
pg dx dy dz [kg m s—2]. A body force is a vector, so in general it has three components f, f, f- per
unit mass [m s—2]. The body force acting in the x coordinate direction is

pfedxdydz [kgms™2] (7)
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4 Pressure term

Surface forces (i.e. forces on the imaginary surfaces of the CV) arise because of molecular stresses in
the fluid. One kind of molecular stress is the pressure, which is present even in a fluid at rest, and it is
normal to the surface on which it acts (see Figure 2). By definition, a positive pressure acts inwards.

Figure 2 Pressure acting in the x direction
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The net force in the x direction acting on the CV is

0
—(p +£dx)dydz+pdydz

d
= —%dx dydz |kgm S_Z] (8

The faces with centres R to U do not contribute to the net force because the pressure on them is normal
to the x direction.



AKINSON SCIENCE LIMITED THEORY GUIDE

5 Viscous stress terms

If a fluid element changes size or shape with time, viscosity creates further stresses that may act normal
to a surface (a viscous normal stress) or tangentially (a viscous shear stress). We define the different
components of viscous normal stress and viscous shear stress as shown in Figure 3. The first subscript
of the symbol ¢ represents the direction of the stress and the second subscript represents the direction
of the surface normal.

Figure 3 Viscous normal stresses and shear stresses in Cartesian coordinates

00,
P Oy + I dx

00,
ax
00y,
dz

Normal stresses

By convention, an outward normal stress acting on the CV is positive.

Shear stresses

By convention, the shear stresses are taken as positive on the faces farthest from the origin. Thus a shear
stress oxy acts in the positive x direction on the visible (upper) face perpendicular to the y axis and a
corresponding shear stress acts in the negative x direction on the invisible (lower) face perpendicular to

the y axis.

Referring to Figure 3, the net force in the x direction acting on the CV is

00,y 00y
(O'xx + Ep dx) dy dz — oyxdy dz + ( 0y + Wdy dx dz — oyydx dz
00y,
+ (ze + Wdz) dx dy — g,,dx dy

<60xx N 00y, N 00y,

-2
9% 3y e ) dxdydz [kgms™*] (9)
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Collecting together the expressions (7), (8) and (9), the sum of the x components of the forces acting
on the fluid in the CV is

Op 00y, 00y, 00y,
-— dxdyd k —2 10

10
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6 Momentum equations in terms of stress

By substituting expressions (2), (6) and (10) into Eq. (1) and dividing by the volume of the CV,
dx dy dz, we obtain the x component momentum equation for three-dimensional unsteady
compressible flow in Cartesian coordinates in terms of stress:

d(pu)  9d(pu®) d(puv) Ad(puw)  dp 00y 00y, 00y, o
ot T Tox Ty "oz T ot ox "oy oz TP lkemTsT (D)

We can derive equations for the y and z components of momentum in a similar way. The equations are,
respectively:

d(pv) Ad(pvu) d(pv?) d(pvw)  dp 0oy, 0oy, Doy, —2 o2
St t % t= =t ax+ay+az +pfy [kgm™s™*]  (12)

a(pw) d(pwu) Ad(pwv) d(pw?)  dp 0a, 00, 0oy, o
ot T oax T oy TTaz T ot ax Ty Tz TPk lkemTsT (3

11
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7 Constitutive equations

For a variable-density Newtonian viscous fluid, the viscous normal stresses Oxx, Oyy, 07, [kg m~1 s-2]
and the viscous shear stresses Oxy, Oyx, Oxz, Ozx, Tyz, 07y [Kg m~1s-2] are given by

Ju
Oxy = 2U=—+ AV -V

dx
av
Oyy = Zu@+AV-V
aw
Opp = ZuE+AV-V
du Jdv
ey = 0 = 1 (35+ 35)

dv  dw
% =0y =1 (5 + )

ow Jdu
Ozx = Oxz Zﬂ(a+5)

In these equations u is the shear viscosity or first viscosity and A is the volume viscosity or bulk viscosity.
The second viscosity { is defined by

—A+2
(= FH

The second viscosity ¢ is often assumed to be zero, making the volume viscosity A equal to —2u/3.
This assumption seems to have a theoretical basis only in the case of an ideal monatomic gas. However,
it is often carried over to both liquids and gases of all degrees of complexity.

The divergence term V-V is

v v—('a+'a+ka) (ui + vj + wk)
=13, lay 5,) Wtvitw
Ju dv Jw
e Loy -1
6x+8y+az s~

12
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8 Momentum equations in terms of velocity

By substituting the constitutive equations into (11), (12) and (13) we obtain the three-dimensional
unsteady compressible flow momentum equations in Cartesian coordinates:

x coordinate momentum

d(pu) 9d(pu?) a(puv) d(puw) ap 0 ou
ot | ox 3y 9z _£+$[2“$+’W'V

ay[” (Z; ax)] az["(aw au)]+Pfx [kgm™2s72] (14)

y coordinate momentum

a(pv) a(pvu) a(pvz) +6(pvw) _ o 0 [ (0u+617)
it ox 3y z oy axl*\Gy ax]

A PCLPT v]+ [ (av aw>]+ [kem=2s72] (15)
a7 1* 3y Iz 3y Pfy gm

z coordinate momentum

a(pw) a(pwu) a(pwv) a(pw?) 0 ow ou
at ox ay ez oz ax[”( 62)]

e

Equations (14), (15) and (16) are expressions of the conservation of momentum over an infinitesimal
control volume. They are often referred to as the conservative form of the momentum equations.

For each equation, we can subtract the continuity equation multiplied by the corresponding momentum
component, u, v or w, from the left-hand side. For the x coordinate momentum equation, we obtain:

a(pu) a(puz) ﬁ(puv) a(qu) a(p) +6(pu) +6(pv) +6(pW)
at ox dy oz "ot T ox dy 0z

dp
= __+_[2”a_+w v]

+0[ (6u+6v>]+0[ (6w+6u)
dy a dy 0x az"\ox o ] Plx

or

du du du au] dp 0 [

ot Yox vc’)y WZ:__’L_

Ju
2u—+ AV -
ox Ox K + V]

Ox

ay[#@; gZ)] az['u<aw au)]+pfx [kgm™2s72] (17)

13
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Equation (17) is often referred to as the non-conservative form of the x coordinate momentum equation.

We can simplify (17) by introducing the material derivative D /Dt. In Cartesian coordinates the material
derivative is

D = 9 + 9 + 9 + 9 (18)
Dt ot “ax T Vay " "oz

Equation (17) can now be written as

x coordinate momentum

Du_ op 6[2 6u+lv V]
th _ax+6x “ax

"oy [” (Z; ax)] 0z [” (aw au)]+Pfx [kgm™2s72]  (19)

Similarly, we can write

y coordinate momentum

Dv ap (au 617)
D~ "oy ax[“ dy ax]
92,9 4w v] [ (a” aW)]+ [kem=2s72] (20)

z coordinate momentum

DW_ (aw au)
Pt =~ ax[” Bz]

+ a[ (av+aw)]+ g [2 aW+/1\7 V]+ [kgm™2s72] (21)
ay“ dz dy dz Haz Pl gm s

14
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