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1 Cartesian coordinates

In this theory guide we shall derive the equation of conservation of mass of a moving fluid (the
continuity equation) in terms of the Cartesian coordinate system and the cylindrical coordinate system.
In each case the derivation is based on the concept of an infinitesimal control volume. For the case of
Cartesian coordinates, the continuity equation can be derived by considering the flow of a fluid into and
out of the infinitesimal rectangular control volume (CV) shown in Figure 1. The edges of the CV are
parallel to the coordinate axes x, y and z, and the lengths of the edges dx, dy and dz are small enough
for us to be able to neglect quantities of order dx?, dy?* or dz*.

When applied to the control volume, the conservation principle for any conserved quantity Q can be
written

Rate of increase Rate at which Q Rate at which Q Sum of sources
of Q in the CV enters through leaves through and sinks of Q
= | the surfaces of ~ | the surfaces of T | inthecv (1.1)
the CV the CV

Figure 1 Infinitesimal control volume for Cartesian coordinates
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For the continuity equation the conserved quantity Q is mass [kg], which is equal to density X volume.
There are no sources or sinks of mass, so the last term in (1.1) is zero.

The mass of fluid in the CV is p dx dy dz [kg] and its rate of increase with time is

d
a—idxdydz [kgs™1] (1.2)

The rate of flow of mass through the face normal to the x direction with centre P is equal to the product
of the density and the velocity normal to the face (pu) and the area of the face dy dz, i.e.

(pwdy dz  [kgs™]

The corresponding rate of flow of mass out of the parallel face with centre Q is

d(pu
<pu + ((')px ) dx) dydz [kgs™1]

so the net rate of flow out of the CV through the faces with centres P and Q is

a(pu)
pu + Ix dx |dy dz — (pu) dy dz

_0(pu)
T 9x

dxdydz [kgs™'] (1.3)

Similarly, the net rate of flow out of the CV through the faces normal to the y axis with centres R and
Sis

a(pv)
dy

dxdydz [kgs ] (1.4)

and the net rate of flow out of the CV through the faces normal to the z axis with centres T and U is

d(pw)
0z

dxdydz [kgs™] (1.5)
By inserting expressions (1.2) to (1.5) into Eqn. (1.1) we obtain

dp

a(pu) 4 a(pv) N a(pw)
at

dx dy 0z

dx dy dz = —( )dx dydz [kgs™1]

After dividing by the volume of the CV, dx dy dz, and moving terms over to the left-hand side of the
equation we obtain the continuity equation for three-dimensional unsteady compressible flow in
Cartesian coordinates:

0_p+6(pu)+0(pv)+6(pW) _

-3 -1
3t 9% 3y e 0 [kgm™s™'] (1.6)
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2 Cylindrical coordinates

21 Method 1

We can derive the continuity equation in cylindrical coordinates based on the concept of an infinitesimal
control volume, just as we did with the continuity equation in Cartesian coordinates. This time we
consider the properties of the flow into and out of the infinitesimal annular control volume (CV) shown
in Figure 2. The lengths of the sides dr, rd@ and dz are small enough for us to be able to neglect
quantities of order dr?, r*d6? or dz?. Recalling (1.1), the conservation principle for any conserved
quantity Q can be written

Rate of increase
of @ in CV

Rate at which Q
enters through

the surfaces of

the CV

Rate at which Q
leaves through
the surfaces of
the CV

Sum of sources
and sinks of Q
within CV

Figure 2 Infinitesimal control volume for cylindrical coordinates

a(pvy)

PV + dr> (r +dr)dbdz

or

(pvg)drdz

d(pv,
(pvz + (g: )dz> X

¥[rd6 + (r + dr)dO]dr

(pv,)Ye[rd0 + (r + dr)dé]dr
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For the continuity equation the conserved quantity Q is mass [kg], which is equal to density X volume.
There are no sources or sinks of mass, so the last term in (1.1) is zero.

The volume of the control volume is dr rd6 dz [m3], so the mass of fluid in the CV is p dr rdf dz
[kg] and its rate of increase with time is

d
0_de rdddz [kgs™!] (2.2)

The rate of flow of mass through the face normal to the r direction with centre P is equal to the product
of the density and the velocity normal to the face (pvr) and the area of the face rdf dz, i.e.

(pv,)rd8dz [kgs™1]

The corresponding rate of flow of mass out of the parallel face with centre Q is

<pvr + a(g) or) dr) (r+dr)dddz [kgs™1]

so the net rate of flow out of the CV through the faces with centres P and Q is

d(pvy)
oV + 5 dr |(r +dr)d6 dz — (pv,) rd6 dz

0
= (pvr + (g or) dr) rdf dz + (pvr (g or) dr) dr d6 dz — (pv,) rd0 dz

d(pv
- (grr) drrd0 dz + pv, dr d dz + (p T)d 240dz  [kgs1]

We can neglect the term in dr?, so the net rate of flow out of the CV through the faces with centres P
and Q is

d(pv,
(grr) drrdfdz + pv,.drdfdz [kgs™t] (2.3)
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The rate of flow of mass through the face normal to the 8 direction with centre R is equal to the product
of the density and the velocity normal to the face (pve) and the area of the face dr dz, i.e.

(pvg)drdz [kgs™!]

The corresponding rate of flow of mass out of the face with centre S is

d(pv
<pv9+ (gge)cw)drdz [kgs™1]

so the net rate of flow out of the CV through the faces with centres R and S is

d(pv
%drdﬁdz kgs™1] (2.4)

The rate of flow of mass through the face normal to the z direction with centre T is equal to the product
of the density and the velocity normal to the face (pvz) and the area of the face. The area of the face is

dr (r + Yadr)d6
so the rate of flow of mass through the face is
(pv,) dr (r + %edr)dd  [kgs™1]
The corresponding rate of flow of mass out of the face with centre U is

d(pv.
<pvz + % dz) dr (r + %dr)do  [kgs™!]

so the net rate of flow out of the CV through the faces with centres T and U is

d(pv d(pv d(pv
(gZZ)dr(r+1/zdr)d6dz = (0 Z)drrd6d2+ )

Ydr*dodz [kgs™!]

We can neglect the term in dr?, so the net rate of flow out of the CV is

a(pvy,)
0z

drrdddz [kgs™t] (2.5)
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By inserting expressions (2.2) to (2.5) into (1.1) we obtain

dp
ot

d(pvy) L P 19(pve) +6(pvz)

drrd9d2=—< pw " +r 50 P

) drrd6dz [kgs™ 1]

After dividing by the volume of the CV, dr rd6 dz [m3], and moving terms over to the left-hand side
of the equation we obtain:

dp  0(pvy)  pvr  10(pvg)  0(pv;)
o TF v TTaz -

0 [kgm™3s71]

We can combine the second and third terms into one, so the continuity equation for three-dimensional
unsteady compressible flow in cylindrical coordinates is

d 10(rpv 10(pv d(pv.
o 1 (pr)+_ (P9)+ (pv,) _

-3 -1
ot r Or r 00 dz 0 [kgm™s™'] (2.6)

10
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2.2 Method 2

We can derive the continuity equation in cylindrical coordinates from the continuity equation in
Cartesian coordinates by introducing the vector differential operator del, written V, and the divergence
of a vector V, written V-V or div V. The vector differential operator is defined by

V—a'+a+ak— +'a ka
=ox oy T ez T ax oy T 0z
and the divergence of a vector V is defined by
Vv_<a i+ 2y ak) (V'+V'+Vk)—aV1+aV2 oV
R (')xl (')y] oz ) SRRC R ~dx  dy 0z

Further details of the vector differential operator and the divergence can be found in textbooks on vector
analysis, such as Ref. [1].

We can write Eq. (1.6) as follows

dp +a(pu) +6(pv) +0(pW)

at 0x dy 0z
_ap+(a_+a_+ak) (pui + pvj + pwk
=9 T Gxi T T o) (pui vl pwh)
_op _ 31
—E+V-(pV)—O [kgem™s™'] (2.7)

We can express the divergence in orthogonal curvilinear coordinates as follows

1 d d d
—(pA h,h —(pA,h-h —(pAs;h.h 2.8
hlhzhg[aul(p 1M 3)+6u2(p 2h3 1)+6u3(p 3y 2)] (2.8)

V-(pV) =

(see Chapter 7 of Ref. [1]) where (u1, uz, usz) is an orthogonal curvilinear coordinate system,
V= V1(’LL1, Uz, u3), V,= Vz(u1, Uz, u3), Vs = V3(’LL1, Uy, u3), and h1, hz, h3 are scalefactors.

We can show that the cylindrical coordinate system is orthogonal (see Chapter 7, Problem 3 of Ref. [1]).
For a cylindrical coordinate system, we have

U =r,u,=0,u;=z
V1=17r, V2=U9, V3=UZ
h1=hr=1,h2=h9=r,h3=hz=1

(see Chapter 7, Problem 7 of Ref. [1]). Substituting these expressions into (2.8) gives

1[aCrev) | aCove)  0Crpv,)

V-(pV)=r or 00 0z

=la(rpvr)+la(pv9)+a(pvz)
r or r 00 0z

11
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On substituting this expression for V-(pV) into Eq. (2.7), we obtain the continuity equation for three-
dimensional unsteady compressible flow in cylindrical coordinates:

6p+15(rpvr)+16(pve)+6(pvz) _

“F -3 -1
at r Or r 00 0z 0 [kgm™s™]

12
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3 Integral form of the continuity equation

The divergence theorem of Gauss states that if V is the volume bounded by a closed surface S and
A(x, y, z) is a differentiable vector field, then

JV-AdV=JA.ndS=JA-dS (3.1)
S S

4

where n is the positive (outward drawn) normal to S. Further details of the divergence theorem and
related integral theorems can be found in Ref. [1].

In Section 2 we showed how the continuity equation can be written in terms of the vector differential
operator V (equation (2.7)):

d
6[: +V-(pV) =0 [kgm3s71]

Integrating (2.7) over a volume V inside a closed surface S gives
f—dV + f V- (pv)dV =0
or

%fpdV+fV-(pv) av=0 (3.2)

4 %4

By applying the divergence theorem to (3.2) we obtain
0
atfpdV+f(pv)ndS 0 (3.3)

We now have the equation of continuity in terms of the vector differential operator V (2.7) and as an
integral equation (3.3).

13
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