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1 Scalar conservation equation in Cartesian coordinates

1.1 Control volume analysis

The rate of change of any scalar property @ in a control volume is equal to the net rate at which the
scalar property enters the control volume by convection, plus the net rate at which the scalar property
enters the control volume by diffusion, plus the rate of creation or destruction of the scalar property by
an external source. The processes are set out in (1.1).

Rate of increase Net rate of flow Net rate of flow
of @ in CV - of @ into CV by + of @ into CV by
convection diffusion

Rate of creation
or destruction of (1.D)
@ in CV

The mass fraction of a scalar property in a mixture is the mass of the property per unit mass of mixture.
We shall denote the mass fraction of @ by ¢ [kg @ kg—1 mixture].



AKINSON SCIENCE LIMITED THEORY GUIDE

1.2 Transient and convection terms

Figure 1 shows an infinitesimal rectangular control volume (CV) through which a fluid mixture
containing a scalar @ is flowing. The mass of scalar @ in the CV is equal to the mass fraction
¢ [kg @ kg—1] times the mass of mixture in the CV, p dx dy dz [kg]; that is, p¢p dx dy dz [kg ®]. Note
that kg @ is taken to mean kg of scalar @ and kg alone is taken to mean kg of mixture. The rate of
increase of scalar @ with time, the left-hand term in (1.1), is therefore

d(pd)
at

dxdydz [kgds™t] (1.2)

Figure 1 Infinitesimal control volume for Cartesian coordinates
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The scalar may enter or leave through any of the faces P to U in Figure 1, transported by the mass flow
of mixture through the faces. The rate of flow of scalar @ through the face perpendicular to the
x direction whose centre is P is ¢ [kg @ kg—1] times the mass flow of mixture through the face,
pu dy dz [kg s1]; that is,

pup dydz [kg® s~ 1]

The rate of flow of scalar @ through the opposite face whose centre is Q is

<pu¢ + 6(;;1;(1)) dx) dydz [kg®s™1]

and so the net rate of flow of scalar @ out of the CV through the faces with centres P and Q is

<pu¢ + a(ngf’) dx) dydz — pu¢p dy dz

d(pug)
X

3 dxdydz [kgds1]

The rate of flow of scalar @ through the face perpendicular to the y direction whose centre is R is
¢ [kg @ kg—1] times the mass flow of mixture through the face, pv dx dz [kg s—1]; that is,

pvp dx dz [kg®s™1]
The rate of flow of scalar @ through the opposite face whose centre is S is

<pv¢ + 0(/;;(#) dy) dxdz [kg®s™1]

and so the net rate of flow out of the CV through the faces with centres R and S is

d
<pv¢> + (/;;q.')) dy) dx dz — pvg dx dz
d
_ (’;;d’) dxdydz [kg® s

Similarly, the net rate of flow out of the CV through the faces normal to the z axis with centres T and
Uis

a(pwo)
0z

dxdydz [kg® sl
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Adding together the terms for the three pairs of faces, the sum of the net rates of outflow of scalar @ is

[a(pwp) N a(pve) N a(pwo)

-1
% 3y e ]dx dydz [kg®s™]

The net rate of inflow of @ by convection, the second term in (1.1), is therefore

_[a(pu¢)+a(pv¢)+6(;;v;¢)] dxdydz [kg®s-l]  (13)

dx dy
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1.3 Diffusion terms

The third term on the right of (1.1) represents the net flow rate of @ into the CV by diffusion. We shall
denote the diffusion flux per unit area by q [kg @ m~2 s-1]. q has components g, q,, and
q- [kg ® m~2s-1] in the x, y and z coordinate directions, respectively. Diffusion is considered positive

if it is in the positive coordinate direction.

Referring to Figure 2, the rate of diffusion of @ through the face perpendicular to the x direction whose
centre is P is qx [kg @ m~2 s—1] times the area of the face, dy dz [m?]; that is,
gy dydz [kg®s™1]

The rate of diffusion of @ through the opposite face whose centre is Q is

d
&dx) dydz [kg®s™1]

(qx + dx

and so the net rate of diffusion out of the CV through the faces with centres P and Q is

0qx
qx+adx dydz—q,dydz

09,
=——dxdyd kg ds™1
o xdvdz  [kg®sT]
Figure 2 Diffusion of @ in the x direction
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Similarly, the net rate of diffusion of @ out of the CV through the faces normal to the y axis with centres
Rand Sis

d
aiyydx dydz [kg®s™1]

and the net rate of diffusion of @ out of the CV through the faces normal to the z axis with centres T
and U is

d
%dx dydz [kg®s™1]

The rate of diffusion of @ into the CV is therefore

0qx  0q, 0q,
—|=—+4+—=—+—|dxdyd kg @ s~1
EP + 3y + 5, | 4 dv dz [kg @ s™1]

The scalar mass fluxes gx, gy, and g, [kg ® m~2 s-1] in this equation are related to the scalar property
gradients by Fick’s law of diffusion:

d¢

= —pD—
Qx p ax
d¢

—_ D_
d¢

qZ - p aZ

where D [m2 s-1] is a diffusion coefficient. The net rate of diffusion of @ into the CV, the third term
in (1.1), is therefore

[;_x (pD g—f) + % (pD g—(}l:) + % (pD g—f)] dxdydz [kg®s™t] (1.4)

10
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1.4 Source term
The scalar @ may be created or destroyed as the mixture flows through the CV. If S¢ [kg @ kg-1s-1] is
the rate at which @ is created or destroyed per unit mass of mixture then the rate of creation or

destruction of @ in the CV, the fourth term in (1.1), is

pSedxdydz [kg®s™1] (1.5)

1.5 Scalar conservation equation

Substituting the terms (1.2), (1.3), (1.4) and (1.5) into (1.1) and dividing by dx dy dz gives the
conservation equation for the scalar property @ in Cartesian coordinates:

d(pp) d(pupp) d(pve) d(pwe)
at ox oy | ez

0 dp d dp 0 8(1)) 3 g
T ox (’DD ax) * dy (pD ay) * 0z (’DD 0z TpSo [kg@m™s™] (16)

11
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2 Scalar conservation equation in cylindrical coordinates

2.1 Control volume analysis

We can derive the scalar conservation equation in cylindrical coordinates based on the concept of an
infinitesimal control volume, just as we did with the scalar conservation equation in Cartesian
coordinates. This time we consider the properties of the flow into and out of the infinitesimal annular
control volume (CV) shown in Figure 3. The lengths of the sides dr, rdf@ and dz are small enough for
us to be able to neglect quantities of order dr?, r2d6? or dz*. Recalling (1.1), the conservation principle
for any scalar property @ can be written

Rate of increase Net rate of flow Net rate of flow
of @ in CV - of @ into CV by n of @ into CV by
convection diffusion

Rate of creation

or destruction of
@ by an external
source

The mass fraction of a scalar property in a mixture is the mass of the property per unit mass of mixture.
We shall denote the mass fraction of @ by ¢ [kg @ kg—1 mixture].

13
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Figure 3 Infinitesimal control volume for cylindrical coordinates

14
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2.2 Transient and convection terms

Figure 3 shows an infinitesimal annular control volume (CV) through which a fluid mixture containing
a scalar @ is flowing. The mass of scalar @ in the CV is equal to the mass fraction ¢ [kg ® kg-1] times
the mass of mixture in the CV, p dr rd6 dz [kg]; that is, p¢p dx dy dz [kg @]. Note that kg @ is taken
to mean kg of scalar @ and kg alone is taken to mean kg of mixture. The rate of increase of scalar @
with time, the left-hand term in (1.1), is therefore

%drrd@dz kg®s™] (2.1)

The scalar may enter or leave through any of the faces P to U in Figure 3, transported by the mass flow
of mixture through the faces. The rate of flow of scalar @ through the face perpendicular to the
r direction whose centre is P is ¢ [kg @ kg-1] times the mass flow of mixture through the face,
p vrrdf dz; that is,

pv,prdddz [kgds™1]

The rate of flow of scalar @ through the opposite face whose centre is Q is

<pu¢ + a(g:d)) dr) (r+dr)dddz [kgds1]

and so the net rate of flow of scalar @ out of the CV through the faces with centres P and Q is

d
<pvr¢> + %dr) (r+dr)do dz — (pv,¢p) rd6 dz =
d d
Mdr rd0 dz + pv,¢ dr d6 dz + ww’z do dz

We can neglect the term in dr?, so the net rate of flow of scalar @ out of the CV through the faces with
centres P and Q is

d(pvr¢)

p dr rd6 dz + pv,¢ dr d6 dz

The rate of flow of scalar @ through the face perpendicular to the 6 direction whose centre is R is
¢ [kg @ kg—1] times the mass flow of mixture through the face, face, p vg dr dz; that is,

(pvg¢) dr dz

The corresponding rate of flow of scalar @ out of the face with centre S is

<pv9¢> + %d@) drdz

so the net rate of flow of scalar @ out of the CV through the faces with centres R and S is

d(pvgd)

50 dr d@ dz

15
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The rate of flow of scalar @ through the face perpendicular to the z direction with centre T is ¢ [] kg—1]
times the mass flow through the face. The area of the face is

dr (r + %dr)dé
so the rate of flow of mass through the face is
(pv,) dr (r + %dr)do
and the rate of flow of scalar @ through the face is
(pv, ) dr (r + Ydr)do

The corresponding rate of flow of scalar @ out of the face with centre U is
d(pv.
<pvz¢ + %dz) dr (r + Y2dr)do

so the net rate of flow of scalar @ out of the CV through the faces with centres T and U is

d(pv, )
0z

a(pv,9)

Yodr? d6 dz
0z

dr (r + %dr)d0 dz =

9
dr o dz + 2PVP)
dz

We can neglect the term in dr?, so the net rate of flow of scalar @ out of the CV is
d(pv;9)

dr rdf dz

The sum of the net rates of outflow of scalar @ is

a(pvrd)) pvrd) 1a(p179(f)) a(pvzd))
[ar+r+Fae+az

] dr rdf dz

Finally, we can combine the first and second terms in the brackets into one:

18(7',0177«(1))+18(P179¢)+a(,0772¢)
T or r 00 0z

] drrdfdz (2.2)

16
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2.3 Diffusion terms

The third term on the right of (1.1) represents the net flow rate of @ into the CV by diffusion. We shall
denote the diffusion flux per unit area by q [kg @ m~2 s-1]. q has components q,, qs, and
q- [kg ® m~2s-1] in the 7, 6 and z coordinate directions, respectively. Diffusion is considered positive

if it is in the positive coordinate direction.

Referring to Figure 4, the rate of diffusion of @ through the face perpendicular to the x direction whose
centre is P is qr [kg @ m~2 s~1] times the area of the face, rdf dz [m?]; that is,

q-rd8dz [kgdsT1]
The rate of diffusion of @ through the opposite face whose centre is Q is
aq, -1
qr +Wdr (r+dr)d6dz [kgds™!]

and so the net rate of diffusion of @ out of the CV through the faces with centres P and Q is

9
(qr + %dr) (r + dr)d6 dz — q, rd6 dz =

99y 99 , ,
Wdr rdf dz + pv,q, dr d6 dz + Wdr dé dz

We can neglect the term in dr?, so the net rate of flow of scalar @ out of the CV through the faces with
centres P and Q is

a9y
r

drrdf@dz+ q, dr df dz

The rate of diffusion of @ through the face perpendicular to the 8 direction whose centre is R is
qs [kg ® m~2 s—1] times the area of the face, dr dz; that is,

qo dr dz
The corresponding rate of diffusion of @ out of the face with centre S is

dqp
(CIQ + de) dr dz

so the net rate of diffusion of @ out of the CV through the faces with centres R and S is

dqp
ﬁdr de dz

17



AKINSON SCIENCE LIMITED THEORY GUIDE

Figure 4 Diffusion of @ in the r, 6 and z directions
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The rate of diffusion of @ through the face perpendicular to the z direction with centre T is
q. [kg @ m—2 s~1] times the area of the face. The area of the face is

dr (r + %dr)dé
and the rate of diffusion of @ through the face is
q, dr (r + %dr)dé
The corresponding rate of diffusion of @ out of the face with centre U is
(CIz + %dz) dr (r + %dr)do

so the net rate of rate of diffusion of @ out of the CV through the faces with centres T and U is

2d6 dz

d 0
ﬁdr (r + Ydr)d6 dz = ik
dz 0z

We can neglect the term in dr?, so the net rate of rate of diffusion of @ out of the CV is

0
%dr rdf dz

The rate of diffusion of @ into the CV, the third term in (1.1), is therefore

[aqr ar 16q@

or 730 oz ]d rdé dz

Finally, we can combine the first and second terms in the brackets into one:

_[la(rqr)Jrl@q@ 04,

T ~ 20 T3, ]d rd6 dz (2.3)

The scalar mass fluxes q-, o, and q, [kg @ m~2 s—1] in this equation are related to the scalar property
gradients by Fick’s law of diffusion:

__,p%®
qr = —pD e
_ pbog
0 = r 00
oo

q; = —pD— 57

where D [m2 s-1] is a diffusion coefficient. The net rate of diffusion of @ into the CV, the third term
in (1.1), is therefore

a2 oo 8) oo o vast

19
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2.4 Source term
The scalar @ may be created or destroyed as the mixture flows through the CV. If S¢ [kg @ kg-1s-1] is
the rate at which @ is created or destroyed per unit mass of mixture then the rate of creation or

destruction of @ in the CV, the fourth term in (1.1), is

pSedrrdddz [kg®s™t] (2.5)

2.5 Scalar conservation equation

Substituting the terms (2.2), (2.3), (2.4) and (2.5) into (1.1) and dividing by dr rdf dz gives the
conservation equation for the scalar property @ in cylindrical coordinates:

Ip¢)  10Gpvrd)  19(pved)  9(pv,¢)

Jat r or r 060 0z
19 apy 1 0 dp\ 9 [ 9P e

20



	1 Scalar conservation equation in Cartesian coordinates
	1.1 Control volume analysis
	1.2 Transient and convection terms
	1.3 Diffusion terms
	1.4 Source term
	1.5 Scalar conservation equation

	2 Scalar conservation equation in cylindrical coordinates
	2.1 Control volume analysis
	2.2 Transient and convection terms
	2.3 Diffusion terms
	2.4 Source term
	2.5 Scalar conservation equation


